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Abstract

We analyze the dependence of thermal denaturation transition and folding

rates of globular proteins on the number of amino acid residues, N . Using

lattice Go models we show that ∆T/TF ∼ N−1, where TF is the folding

transition temperature and ∆T is the transition width computed using the

temperature dependence of the order parameter that distinguishes between

the unfolded state and the native basin of attraction. This finding is consistent

with finite size effects expected for the systems undergoing a phase transition

from a disordered to an ordered phase. The dependence of the folding rates

on N for lattice models and the dataset of 57 proteins and peptides shows

that kF ≃ k0F exp(−CNβ) with 0 < β ≤ 2/3 provides a good fit, where C is

a β-dependent constant. We find that kF ≃ k0F exp(−1.1N
1

2 ) with an average

(over the dataset of proteins) k0F ≈ (0.4µs)−1, can estimate optimal protein

folding rates, to within an order of magnitude in most cases. By using this fit

for a set of proteins with β-sheet topology we find that k0F ≈ k0U , the prefactor

for unfolding. The maximum ratio of k0U/k
0
F ≈ 10 for this class of proteins.

I. INTRODUCTION

Deciphering the factors that determine the foldability of protein sequences [1,2,3,4,5] is
an important problem from the perspective of protein design, protein structure prediction,
and in vitro and in vivo protein folding. Foldability refers both to the folding rate, kF , and
thermodynamics of the transition from the ensemble of unfolded states (U) to the native
state or, more precisely, to the native basin of attraction (NBA). Folding rates and the
associated equilibrium characteristics depend on intrinsic factors (sequence and topology) as
well as on external conditions (pH, temperature, salt concentration, and viscosity). Variation
in external conditions can not only alter the rates, but also the mechanism of folding. Despite
this obvious fact most of the studies have been focused on the dependence of kF solely on
the characteristics of the native states as described by the crystal (or NMR) structures.

The role of finite size effects on the thermodynamics of protein folding has received
very little attention. The emphasis on the cooperativity of the transition from U state to
NBA seems to have precluded consideration of the role of N , the number of residues in a
sequence. This transition, for apparent two-state folders, has all the hallmarks of (weak)
first-order phase transition. The highly cooperative U↔NBA transition has lead some
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authors to suggest that there is no evidence that partially structured states contribute to
the thermodynamic properties of proteins. Computational studies have shown [6] that in
β-hairpin forming sequence from the C-terminus of GB1 protein structure is acquired over
a finite range of temperatures, even though the overall folding can be described as a broad
”two-state” transition [7]. Experiments on refolding of barnase have also suggested that
structure is lost incrementally upon temperature induced unfolding [8]. Direct temperature
dependence of structure formation in leucine zipper using one dimensional NMR experi-
ments has established that melting temperature varies across the structure [9]. Although
the variations occur over a relatively narrow range of temperatures, it is clear from these
experiments that because of the finite size of proteins partially folded structures contribute
to folding thermodynamics. These observations warrant an examination of finite size effect
on the U ↔ NBA transition. Building on our previous study [10], we further investigate
the role of N in thermal denaturation using lattice models of proteins.

It has been noted [11] that kF correlates well with the relative contact order (RCO), which
measures the proximity of side chain contacts in the folded state. The notion that protein
folding is initiated with residues forming local structures and, thus, is determined by their
proximity along the sequence constitutes the basis of the hierarchical folding mechanism [12].
Thus, in retrospect, the correlation between the RCO and kF is not entirely unanticipated,
especially in α-helical proteins. Although RCO is an important indicator of the folding rates,
it should be pointed out that there is little correlation between RCO and kF for proteins
with β-sheet topology. Clarke et al [13] showed that neither kF nor the unfolding rates kU
correlate with RCO for a class of β-sheet proteins belonging to the immunoglobulin (Ig) fold.
The RCO for the 6 proteins examined [13] is in the very narrow range (0.17 ≤ RCO ≤ 0.20).
Nevertheless, the refolding rates for these proteins vary by a factor of 800. More recently,
Clarke and coworkers have shown that for a number of Ig domains from the muscle protein
titin kF can vary by over four orders of magnitude [14], although their RCO values are
expected to be nearly the same. These studies show that factors besides RCO play an
important role in the determination of kF .

Surprisingly, it was initially suggested [11] that neither stability nor the size of pro-
teins plays a role in determining kF . These counterintuitive observations contradict several
theoretical [15,16,17,18] and a few experimental studies [13]. More careful examination of
the database of well characterized proteins has shown that, although there are exceptions
[19], stability is an important factor that determines kF [13,20]. Recently, several studies
[21,22] have concluded that N , the number of amino acids, must also play an important role
in determining kF . In this paper we examine the dependence of rates as well as thermal
denaturation of single domain proteins on N .

Beginning with the paper by one of us [15] a number of theoretical studies [16,17,18] have
predicted that N should play a significant role in controlling kF . Given that polypeptide
chains are heteropolymers we expect that their relaxation times in both the folded and un-
folded states must depend on N . Theoretical studies [15,16] suggest that the dependence of
kF on N is dictated by the interplay of three characteristic temperatures of the polypeptide
chain, namely, TF (the folding transition temperature), Tθ (the collapse transition temper-
ature), and Tg (the glass transition temperature). It appears that in most experiments
the external conditions are such that fastest folding is observed near the ”tricritical” point,
where TF ≈ Tθ in accord with the prediction by Camacho and Thirumalai [23]. For near
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optimal folding, as it may be the case for minimally frustrated sequences, it has been argued
that

ln(kF/k
0

F ) ∼ αlnN, (1)

where α ≈ 4 [15] and k0
F is an undetermined prefactor. For artificial Go models α ≈ 3

[18,24]. On the other hand, due to topological frustration, even the sequences following
two-state kinetics have a rough energy landscape. In this case

ln(kF/k
0

F ) ∼ Nβ . (2)

The value of β has been suggested to be less than unity and is probably in the range
0.5 ≤ β ≤ 2

3
[15,16,17]. Given the limited range of N for single domain proteins it is difficult

(see below) to determine β precisely.
To probe finite size effects on thermally induced folding we have performed Monte Carlo

simulations using Go lattice models. These results are used to quantitatively establish the
effect of finite N on rounding the U ↔ NBA transition. A dataset of proteins, for which
kF is available, is used to draw lessons on the dependence of kF on N . Using these results
we show that unambiguous determination of β is not possible. However, we argue that the
N dependence given in Eq. (2) is useful in analyzing the experimental data. As a byproduct
of this work we also provide estimates of the folding and unfolding prefactors, k0

F and k0
U .

II. MODELS AND METHODS

For the numerical simulations we represent a polypeptide chain using lattice Go model
without side chains. The energy of a conformation

E =
∑

i<j

ǫijδrij ,a, (3)

where a is a lattice spacing, rij is the distance between non-bonded beads i and j, and the
contact energies ǫij are chosen to be -1 for native contacts and 0 for non-native ones. Go
models are useful in exploring general physical principles that govern protein folding under
the condition of marginal stability of the native state [25,26]. The sequences were selected by
a standard sequence space Monte Carlo algorithm, which maximizes the Z-score for a given
target structure. The target structures for each N were chosen to be maximally compact.
For example, for N = 18 and N = 80 the native structures occupy the vertexes of 3x3x2
and 4x4x5 cubes, respectively.

The thermodynamics of folding were determined using Monte Carlo simulations based on
MS3 move set [27,28,29,30], which involves single, double and triple bead moves. Because
this move set involves multiparticle updates, it is much more efficient compared to the
standard move set [29,30,31]. The thermodynamic properties of the sequences are calculated
using the multiple histogram method [32]. Typical number of Monte Carlo trajectories used
to collect histograms is 50-100 depending on N . The free energy is calculated as a function
of the number of native contacts Q, which is treated as an approximate reaction coordinate
for Go models. This allows us to estimate the dependence of folding and unfolding free
energy barriers on N .
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For lattice models the structural similarity with the native conformation is measured by
the overlap function [23]

χ = 1−
1

N2 − 3N + 2

N∑

i<j+1

δ(rij − r0ij), (4)

where the superscript 0 refers to the native state. The folding temperature TF is defined as
a temperature at which d < χ > /dT is maximum and the transition width ∆T is defined
as the full width at half maximum of d < χ > /dT at T = TF .

III. RESULTS

A. Finite size effects in thermal denaturation: The transition width ∆T is obtained
from the temperature dependence of d < χ > /dT (see Fig. 1a for an example). For all
the sequences considered here TF ≈ Tθ. For finite size systems the U ↔ NBA transition
is expected to be rounded. The rounded nature of the transition which has been seen in
simulations, is reflected in the temperature dependence of d < χ > /dT (Fig. 1a). More
importantly, we expect ∆T/TF to scale as

∆T

TF
∼ N−1. (5)

The data for lattice Go models show that ∆T/TF ∼ N−λ with λ = 1.2 ± 0.1 (Fig. 1b).
The small deviation from the expected theoretical result (Eq. (5)) may be a consequence
of the relatively small N ≤ 80 in the sample. For small values of N the native state does
not have a well-defined core. As a result fluctuations are relatively large, which may explain
the observed deviation. Analysis of the experimental data indeed shows that (Eq. (5)) is
obeyed with great precision [10,33].

B: N dependence of folding and unfolding barrier heights at TF for Go models.
To compute the free energy folding barriers, ∆F ‡

F (≃ ∆F ‡
U , the unfolding barrier, at TF ) it

is necessary to define a reaction coordinate. The precise reaction coordinate for a multi-
dimensional process such as protein folding is difficult to ascertain. However, Onuchic and
coworkers [34] have argued that, for minimally frustrated systems such as the Go models, the
fraction of native contact Q may be appropriate. Accordingly, we have computed F (Q) for
about 80 sequences with N ranging from 18 to 80. This is the largest number of sequences
used so far to test the expected scaling of ∆F ‡

F and ∆F ‡
U . At TF , τ

0
F exp(∆F ‡

F/kBTF ) =
τ 0Uexp(∆F ‡

U/kBTF ). Because it is not obvious that τ
0
F ≈ τ 0U , ∆F ‡

F and ∆F ‡
U may, in principle,

exhibit different scaling behavior with N .
From the typical free energy profile F (Q) (Fig 2a) we computed ∆F ‡

F and ∆F ‡
U . The

variation of ∆F ‡
F/kBT as a function of lnN , N1/2 and N2/3 for the Go sequences plotted in

Fig. 2b,c,d, respectively, shows that all three fits quantitatively reproduce the simulation
results. However, we argue below using the analysis of experimental data that ∆F ‡

F ∼ lnN
is not viable. Based on experimental estimates of τ 0F and τ 0U we find that ∆F ‡

F ∼ N1/2

provides the best physically acceptable representation of the data. From the lattice model
computations we find ∆F ‡

F and ∆F ‡
U have the same dependence on N , which implies that

τ 0F ≈ τ 0U .
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C. Chain length dependence of folding rates: The RCO, which is a characteristic of
the native topology of proteins, is [11]

RCO =

∑
i,j ∆ij |i− j|

N
∑

i,j ∆ij
, (6)

where |i − j| is the sequence separation between the residues i and j and ∆ij is unity, if
i and j form a native contact, or zero, otherwise. The observed correlation between RCO
and ln kF suggests that folding is most rapid, if the native state has a large fraction of
local contacts. The importance of RCO is based on the sound physical idea that residues
local in sequence space tend to form interactions early in the folding process and, if these
substructures can ”coherently” add to produce the folded structure, efficient folding may
be realized. However, almost all proteins are stabilized by a sizable fraction of long-ranged
(non-local) contacts. This suggests that ln kF may also depend on other factors (for example,
stability [20] and N) besides RCO. Lattice model simulations [35] and experiments [13] have
shown that native state stability is also a contributing factor to refolding rates.

Depending on the extent of energy frustration one of us suggested [15] that kF ∼ Nα

(for optimized sequences) or kF ∼ exp(−C1N
1

2 ), where C1 is a constant (Eqs. (1,2)). By
balancing the ”bulk” free energy gain due to the formation of a stable hydrophobic core
and the surface tension cost due to interface formation it has been proposed [16,17] that for

optimal folding kF ∼ exp(−C2N
2

3 ), where C2 is a constant. Although, the limited range of
N values accessible in proteins makes it difficult to unambiguously determine the precise way
kF decreases upon increasing N , it is generally agreed that free energy barriers in proteins
shall be relatively small. Moreover, the transition region could be broad with roughness
superimposed on it. As a result ∆F ‡

F/kBTF is expected to grow only as Nβ with β < 1. The
sublinear growth of ∆F ‡

F/kBT with respect to N naturally explains both the rapid folding
(kinetics) and marginal stability (thermodynamics) of folded states of proteins.

Recently, Koga and Takada [36] have computed folding rates for 18 proteins using Cα-Go
models. They fit the data using kF ∼ exp(−C3RCO×Nβ) with β = 0.607±0.179 and C3 is
a constant. Within the error bar of their fit it is impossible to distinguish between β = 0.5
or 2/3. Their results showed, as argued on theoretical grounds, that β < 1. In addition,
due to the possibility that RCO decreases with N [22] it is likely that the actual value of β
in [36] is considerably smaller. By focusing on the proteins that fold by three-state kinetics
Galzitskaya et al. [21] have argued that chain length N is the major determinant of folding
rates. However, they were unable to determine the precise dependence of kF on N .

Ivankov et el. [22] have reconsidered chain length dependence of kF by analyzing experi-
mental data for 57 proteins (both two and three state folders) and peptides. They suggested
that ln kF ∼ −0.44RCO × N + 11.15 for the set of 57 proteins with the correlation co-
efficient p = 0.74. For this dataset of proteins it is argued that RCO ∼ N−0.3, so that
kF ∼ exp(−C4 × N0.7), where C4 is a constant. Because there are errors in fitting RCO
to a power law decay with N , the indirect inference that β ≈ 0.7 is not transparent. To
circumvent this problem we have directly examined the dependence of lnkF on N . The fit
of lnkF using the theoretically proposed models are shown in Fig. 3a, b and c. The corre-
lation coefficient for the fits lnkF ∼ Nβ is nearly constant for 0 ≤ β ≤ 2/3 and begins to
decrease modestly for β > 2/3 (Fig. 3d). We have also established that the folding rates in
lattice Go models can be adequately fit with β=0, 0.5, or 2/3 [30]. From this perspective
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alone it is difficult to distinguish between the three theoretical values of β (0, 0.5, and 2/3).
However, we rule out lnkF ∼ lnN (Fig. 3b) based on the following arguments: (1) The
power law fit yields lnkF = −5.5 lnN + 28.5 which implies k0

F ≈ e28.5s−1 = (0.4ps)−1. This
value for the prefactor k0

F is nearly the same as kBT/h ≈ (0.2ps)−1, which is reasonable for
small molecules, but is not appropriate to describe folding reactions. (2) The value of the
exponent α = 5.5 is too large to be justified theoretically. Such a large value of α is usually
indicative of an underlying activated process with a relatively small barrier [30].

The fits to the data in Fig. (3) cannot distinguish the scalings of lnkF with N1/2 or N2/3.
This is consistent with our results presented in Fig. 2. In an attempt to further discriminate
between β = 0.5 and β = 2/3 we focus on the numerical values of the prefactor k0

F . The
inverse of the prefactor 1/k0

F for the N1/2 scaling of the barrier height is 0.4µs, whereas
1/k0

F ≈ 8µs forN2/3 scaling (see caption to Fig. 3). By applying Kramer’s theory to describe
the U ↔ NBA transition it has been argued that τ0 = 1/k0

F should be considerably greater
than h/kBT [37,38,39]. The range 0.4µs ≤ τ0 ≤ 8µs obtained from the two fits is consistent
with this expectation. Therefore, it follows that, unless a direct experimental measurement
of k0

F is made, it would be difficult to determine the precise value of β. The goodness of fits
with β = 1/2 or β = 2/3 shows clearly that barriers to folding scale sublinearly with N .

D. Prefactors for folding and unfolding. There is considerable interest in obtaining
a fairly accurate estimate of τ 0F (∼ (k0

F )
−1) at near neutral pH and T = 25oC so that the

measurements of average barrier heights can be made directly. Estimates of τ 0F have been
made using few physically motivated arguments:

(1) Assuming that the most elementary step in the folding process is the formation of a
single tertiary contact (a loop between two residues separated by l intervening residues) it
was argued that the speed limit for folding is about 1µs [40]. Because most probable loops
are predicted to form in about 1µs [42], it follows that τ 0F ≈ 1µs. Eaton and coworkers
[40,41] have provided additional arguments that proteins are unlikely to fold faster than
τ 0F ≈ 1µs.

(2) Yang and Gruebele [43] argue using refolding data of mutants of a helical protein λ6−85

that τ 0F ≈ 2µs. We believe that, in general, for the majority of proteins τ 0F ≈ 2µs should be
near the upper limit for the following reasons. Based on theories of collapse dynamics we
expect that the 80 residue protein λ6−85 becomes compact in about τc ≈ (ηa/γ)N θ ≈ 1.5µs,
where η is the solvent viscosity, a is the Flory characteristic ratio, γ is the surface tension
(50 cal/molÅ2), θ ≈ 2.2 and N = 80. This estimate is close to the folding time for λ6−85,
which suggests that collapse and folding are nearly simultaneous for this protein. Because
these two processes cannot be separated for proteins with N = 80 that fold in about ≈ 1µs,
it appears that one can assume that τ 0F ≈ 2µs may be an upper bound. We believe that
τ 0F ≈ 1µs could serve as a practical estimate for the prefactor, because on time scales greater
than 1µs multiple loops can form and collapse of the entire polypeptide chain can occur,
which could obfuscate direct determination of τ 0F . In arriving at these estimates for λ6−85 we
have assumed that internal viscosity does not alter folding rates appreciably. Although, a
similar observation has been made for refolding of protein L [44] and CspB [45] it is unclear
how important internal viscosity of proteins is in the determination of τ 0F [39]. In addition,
external conditions can alter τ 0F . Thus, τ

0
F ≈ 1µs should be taken merely as a useful estimate

for the prefactor.
The dependence of ln kF on N (Fig. (3)) allows us to estimate τ 0F and τ 0U using the
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experimental data for proteins that are not fully represented in Fig. (3). We use refolding
rates for several β-sheet proteins to estimate τ 0F (Table 1). Assuming N1/2 scaling we find
that τ 0F is in the range (0.1− 18)µs. Except for τ 0F ≃ 18µs obtained for twitchin (TWIg18’)
with low native state stability the average value of the prefactor is τ 0F ≈ 3.5µs. If we
use τ 0F ≃ τF exp(−0.36N

2

3 ) (Fig. (3)), we find 2µs <
∼ τ 0F

<
∼ 400µs (Table 1). For four

immunoglobulin proteins with the exception of FNfn10 (Table 1) the estimated values of τ 0F
using the N

2

3 scaling for the barrier height seem too large. Thus, τ 0F appears to be in the
neighborhood of few µs for the β-sheet proteins and for the α-helical protein λ6−85.

Another question of interest is whether τ 0F ≈ τ 0U? Using lattice model simulations we have
previously argued that the unfolding and folding prefactors are similar [35]. This conclusion
was reached using the number of native contacts Q as a reaction coordinate. It is unclear
whether this result is a consequence of our choice of the reaction coordinate. The results in
Fig. (3) and the measured unfolding rates in Table 1 allow us to directly estimate

τ 0U ≃ τU exp [−(1.1N1/2 + β∆G)], (7)

where τU is the unfolding time, ∆G is the free energy of stability of the native state, and
β = (kBT )

−1. With the exception of TWIg18’ the ratio τ 0U/τ
0
F < 1 and is in the range

0.1 <
∼ τ 0U/τ

0
F
<
∼ 1.0. For this class of proteins the maximum value of τ 0F/τ

0
U
<
∼ 10 (Table 1).

Similar conclusions have been drawn for α-helical proteins as well. Thus, it appears that
τ 0U ≈ τ 0F .

IV. CONCLUSIONS

In this article we have considered finite size effects in thermal denaturation and folding
kinetics. We have established using lattice models that the rounded transition as quantified
by ∆T/TF obeys the expected scaling (Eq. (5)). This is in accord with the earlier analysis
of the experimental data [10], which further suggests that qualitative features of folding
transition can be gleaned using lattice models. Unlike the case of thermal denaturation the
situation is far more ambiguous when the scaling of kF withN is considered. The dependence
of ln kF on N does not match the quality of correlation noted for thermodynamics. If we
delete the fastest folding proteins and peptides and the slowest folding proteins from the
dataset in Fig. 3, the correlation coefficient becomes considerably worse (≈ 0.56) regardless
of the scaling (β = 0.5 or 2/3) used. Nevertheless, the inclusion of the N dependence does
improve the correlation between lnkF on RCO [22]. Using the expected values (from a
number of unrelated studies) for the prefactor, we suggest that the N1/2 scaling for barrier
height ∆F ‡/kBT may be useful in making order of magnitude estimates of refolding rates.
This scaling also implies that the energy landscape of two-state proteins is rugged. The
energy scale for roughness may be of order of a few kBT .
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discussions. We are pleased to acknowledge conversations with M. Gruebele, V. Munoz and
W. A. Eaton on the experimental results of the determination of folding prefactors. Mai
Suan Li would like to thank the hospitality of IPST, where part of this work has been done.
This work was supported in part by a KBN grant and the National Science Foundation
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Table 1. Estimates of the folding and unfolding prefactorsa

proteinb β∆Gc τdF τ eU τ 0F
f τ 0F

g τ 0U
h τ 0U

i

TI I27 (89) 12.7 0.0313 2041 0.974 23.9 0.194 4.76
TWIg18′(93) 6.9 0.667 3571 16.5 412 89.0 2220
CD2d1(98) 11.5 0.0556 588 1.04 26.4 0.111 2.83
TNfn3 (92) 9.1 0.344 2174 9.00 224 6.35 158
FNfn10 (96) 15.9 0.00417 4348 0.0870 2.20 0.0113 0.285
CspB (B.subtilis)(67) 4.6 0.00145 0.101 0.178 3.82 0.125 2.68
CspB (B.caldolyticus)(66) 8.1 0.000730 1.56 0.0960 2.04 0.0623 1.32
CspB (T.maritima)(68) 10.6 0.00177 55.6 0.203 4.40 0.159 3.44

(a) Data for the first five proteins are from [13] and the data for CspB proteins are from [19]
(b) Numbers in parenthesis are the values of N
(c) Free energy of stability extrapolated to zero denaturant concentration
(d) Folding times in seconds
(e) Unfolding times in seconds
(f) Folding prefactor (in units of µs) calculated using τ 0F = τF exp(−1.1N1/2)
(g) Folding prefactor (in units of µs) calculated using τ 0F = τF exp(−0.36N2/3)
(h) Unfolding prefactor (in µs) calculated using τ 0U = τU exp(−1.1N1/2 −∆G/(kBT ))
(i) Unfolding prefactor (in µs) calculated using τ 0U = τU exp(−0.36N2/3 −∆G/(kBT ))
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Figure captions

Fig. (1) (a) Temperature dependence of d < χ > /dT for the lattice sequence with
N = 64. The folding transition temperature is identified with the peak in d < χ > /dT .
The full width at half-maximum is indicated by ∆T . (b) The dependence of ∆T/TF as a
function of N . The straight line gives the fit ∆T/TF ∼ Nλ with λ = 1.2± 0.1.

Fig. (2) (a) Dependence of F/kBT (F is the free energy of a sequence) as a function of
the presumed reaction coordinate Q, the number of native contacts, for one of the N = 64
Go sequences. The unfolding and refolding barriers are extracted from the free energy profile
as indicated. Panel (b) shows the fit ∆F ‡

F/kBTF ∼ lnN . Panels (c) and (d) correspond to
the fits ∆F ‡

F/kBTF ∼ Nβ with β = 0.5 and 2/3, respectively. The results were computed
for N = 18(20), 27(17), 36(18), 48(18), 64(15), and 80(12), where the number in parenthesis
refers to the number of sequences used for averaging ∆F ‡

F/kBTF . Similar scaling with N is
obtained for ∆F ‡

U/kBTF .
Fig. (3) Fits of ln kF as a function of N for the dataset of 57 proteins and peptides

taken from ref. [22]. Cross and hexagon symbols correspond to three and two state folders,

respectively. (a) The fit based on ln kF ∼ N
1

2 . The straight line is y = −1.1x + 14.7 and

the correlation coefficient is 0.71. (b) The fit based on ln kF ∼ N
2

3 . The straight line is
y = −0.36x + 11.7 and the correlation coefficient is 0.70. (c) Fits of ln kF ∼ lnN gives
y = −5.5x + 28.5 with the correlation coefficient of 0.72. (d) Variation of the correlation
coefficient with β. The correlation becomes weaker at β > 2/3.
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