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ABSTRACT  

 

A time trajectory of an observable that fluctuates between two values (say, on 

and off), stemming from some unknown multi-substate kinetic scheme, is the 

output of many single molecule experiments. Here we show that when all 

successive waiting times along the trajectory are uncorrelated the on and the off 

waiting time probability density functions (PDFs) contain all the information. By 

relating the lack of correlation in the trajectory to the topology of kinetic 

schemes, we can immediately specify those kinetic schemes that are equally 

consistent with experiment, which means that it is impossible to differentiate 

between them by any sophisticated analyses of the trajectory. Correlated 

trajectories, however, contain additional information about the underlying 

kinetic scheme, and we consider the strategy that one should use to extract it. An 

example is given on correlations in the activity of individual lipase molecules.  

 
 
 
 
 



INTRODUCTION   
 
 

Since the first patch clamp measurements (Neher and Sakmann, 1976), great 

advances have been made in our ability to look at complex systems on the single 

molecule level (Moerner and Orrit, 1999; Weiss, 1999; Nie et al., 1994; Shera et al., 

1990; Mets et al., 1994; Ha et al., 1999; Schuler et al., 2002; Yang et al., 2003; 

Rhoades et al., 2003; Wennmalm et al., 1997; Bokinsky et al., 2003; Lu et al., 1998; 

Edman et al., 1999; Edman and Rigler, 2000; Velonia et al.; Flomenbom et al.; 

Kasianowicz et al., 1996). In an important class of such experiments, the output is a 

time-series (trajectory) of on-off events (Figs. 1A & 1B). For example, in patch clamp 

measurements (Neher and Sakmann, 1976), one records the ion current through a 

membrane-pore under an applied electric field for a long time. The fluctuations 

between two values of the current are attributed to conformational changes that result 

in opening and closing the membrane-pore. From the two-state current trajectory, one 

wishes to learn about the dynamics of conformational changes of the membrane-pore. 

In single enzyme activity measurements (Lu et al., 1998; Edman et al., 1999; Edman 

and Rigler, 2000; Velonia et al.; Flomenbom et al.), one monitors photon counts as a 

function of time, which are then collected into bins giving rise to the trajectory. A 

two-state trajectory is obtained when either the enzyme itself switches between a 

fluorescent state and a non-fluorescent state (Lu et al., 1998), or a non-fluorescent 

substrate is transformed into a fluorescent product (Edman et al., 1999; Edman and 

Rigler, 2000; Velonia et al.; Flomenbom et al.). By studying this system, one wishes 

to deduce the mechanism of the enzymatic activity. 

In practice, noise induced fluctuations in the signal occur around the on and 

the off values. The ability to restore reliably the noiseless trajectory from the 

experimental output (i. e. to deconvolute the noise) depends roughly on the difference 



between these values relative to the sum of the amplitudes of the noise in each of the 

states. Here, we assume that we are given a noiseless two-state trajectory. 

Such a two-state trajectory contains information about the underlying 

mechanism, which we describe by a kinetic scheme in which each substate belongs 

either to the on state or to the off state. The kinetic scheme may have a large number 

of substates (Figs. 2A-2F), and a net flow at steady-state along some of the 

connections (Figs. 2G-2I) (i. e. a non-equilibrium steady state), when an external 

source of energy is present (Hill, 1985). The goal of single molecule measurements 

that result in two-state trajectories is to learn as much as possible about the underlying 

kinetic scheme. 

 

FROM TRAJECTORIES TO KINETIC SCHEMES  

 

The basic functions that are easily obtained from single molecule two-state 

time-series are the waiting time probability density functions (PDFs) of the on state, 

)(tonφ , and of the off state, )(toffφ . These functions, which cannot be found from bulk 

experiments, can be calculated for any kinetic scheme (Cao, 2000). Clearly, any 

proposed kinetic scheme must reproduce )(tonφ  and )(toffφ . However, when )(tonφ  

and )(toffφ  are multi-exponentials, several models will fulfill this requirement, and 

their number increases with the complexity of the waiting time PDFs (the trajectories 

on Figs. 1A & 1B have the same waiting time PDFs, but were produced from 

different kinetic schemes). Can one discriminate between kinetic schemes that lead to 

the same )(tonφ  and )(toffφ  by looking at the trajectory in more detail?   



A trajectory is completely described by )(tonφ  and )(toffφ  only when waiting 

times along the trajectory are uncorrelated. Therefore, kinetic schemes that lead to 

uncorrelated trajectories with the same )(tonφ  and )(toffφ  cannot be distinguished by 

the trajectory analysis. This means that the trajectory from such a kinetic scheme does 

not contain information about the connectivity of substates within the two states, 

which, as shown below, is a consequence of a specific connectivity between substates 

of different states. We say that such schemes are reducible to a two-state-semi-

Markovian (TSSM) scheme (Fig. 2J). A TSSM process is one where the on [off] 

waiting times are drawn randomly and independently out of a non-exponential )(tonφ  

[ )(toffφ ]. In the literature, the term non-Markovian is often used for any process with 

non-exponential waiting time PDFs. However, here we reserve this term to describe a 

trajectory of correlated waiting times. 

The most straightforward test for correlation in the trajectory is based on the 

two successive waiting times PDFs, ),( 21, ttyxφ , offonyx  ,, = . A trajectory shows no 

correlations when ),( 21, ttyxφ  can be written, for every x and y, as a product of the 

individual waiting time PDFs, )( 1txφ  and )( 2tyφ ,  

)()(),( 2121, tttt yxyx φφφ =    ;  offonyx  ,, = .              (1)     

It is sufficient to demand only the factorization of the two successive waiting times 

PDFs because there are only two observable states, so when all two successive 

waiting times PDFs are factorized, higher order successive waiting times PDFs, e. g. 

),,( 321,, tttzyxφ  , will also be factorized. Since higher order successive 

waiting times PDFs determine all the statistical properties of the trajectory and these 

offonzyx  ,,, =



factorize when Eq. (1) is fulfilled, it follows that for uncorrelated trajectories )(tonφ  

and )(toffφ  contain all the information in the time-series.  

Kinetic schemes are reducible [i. e. fulfill Eq. (1)] regardless of the system 

parameters if and only if after every transition from the on state to the off state, the off 

substates are populated with the same initial probabilities, and vice versa. This occurs 

only for a very specific connectivity between the on and the off substates of schemes, 

and we now give a full characterization of the reducible schemes. When only 

reversible connections between substates are present, a scheme is reducible when the 

on and the off regions are connected through one substate (Figs. 2A-2F), called a 

gateway substate. In general, there are two types of gateway substates. A type 1 

gateway substate is one where all the transitions from the other state enter it (the on 

substate 1 on Fig. 2G). A type 2 gateway substate is one where all the transitions to 

the other state originate from it (the on substate 2 on Fig. 2G). Thus, for a reducible 

scheme with only reversible connections, the gateway substate is of both types 

simultaneously. For a kinetic scheme with a non-equilibrium steady state, there are 

three combinations of gateway substates that lead to a reducible scheme: (a) two 

gateway substates of different types in the same state (Fig. 2G), and (b) & (c) two 

gateway substates of the same type, either type 1 (Fig. 2H) or type 2 (Fig. 2I), in 

different states. Note that the above requirements are the minimal ones and a 

reducible scheme can possess more than two gateway substates. Since our argument 

relies only on the connectivity of the scheme, the reducible schemes can be 

characterized by any substate waiting time PDFs and not just the Markovian 

(exponential) one. Additionally, other less general schemes can fulfill Eq. (1), thus are 

reducible, because of symmetry for special choices of the transition rates.  



As an example, consider the two schemes shown in Fig. 2B and Fig. 2C, each 

containing n off substates and one on substate. Both schemes are reducible because 

there is only one substate in the on state. Even though they reflect very different 

mechanisms, it is possible to make )(tonφ  and )(toffφ  of the two schemes the same (e. 

g. by equating coefficients of the powers of the Laplace variable s of )(sonφ  and 

)(soffφ  from the two schemes ( ∫
∞

0
g −)( dtet st=)(sg ), which results in a set of 

equations relating the transition rates of the two models). The trajectories generated 

from the two schemes will be identical (in a statistical sense). The same is true for all 

three substate schemes (Fig. 2D - Fig. 2F), which are the simplest examples for 

reducible schemes. Recently, Witkoskie and Cao (2004) pointed out that counter to 

intuition schemes Fig. 2E, and Fig. 2F can be made indistinguishable using similarity 

transformation arguments. In the literature, in the context of enzyme kinetics, it has 

been suggested that it is possible to distinguish between schemes, Fig. 2B - Fig. 2C 

using more sophisticated analyses the trajectory (Edman and Rigler, 2000). This does 

not coincide with our findings here.  

For irreducible kinetic schemes ),( 21, ttyxφ  is not factorized for at least one 

combination of . In these cases, functions other than the waiting time 

PDFs contain additional information. Such functions are: (i) 

offonyx ,, =

),( 21, ttyxφ ,  

itself (Lu et al., 1998 ; Cao, 2000; McManus et al., 1985; Colquhoun et al., 1996), as 

used in the pioneering work of Xie and collaborators (1998), and calculated for any 

kinetic scheme by Cao (2000); (ii) the x-y propagator for stationary processes, which 

is the probability density to be in state y at time t given that the process was in state x 

at time 0 (Lu et al, 1998 ; Edman et al., 1999; Edman and Rigler, 2000; Flomenbom et 

al.; Schenter et al., 1999 ; Boguñá et al., 2000). This determines the normalized state-

offonyx ,, =



correlation function, which is the bulk relaxation function; (iii) higher order state-

propagators (Edman and Rigler, 2000; Schenter et al., 1999; Wang and Wolynes, 

1995),  or the corresponding higher order state-correlation functions; (iv) higher order 

successive waiting times PDFs, e. g. ),,( 321,, tttzyxφ , offonzyx ,,, = . Note that the 

functions in (i), (iii) & (iv) can be obtained only from single molecule experiments. 

2

)(tyx+

),( 21, tt xyx,( 21, ttyx φφφ −=∆

∫ −=
t

xy t
0

(* φφ y d)() ττφτ

Which of these functions is the most useful in differentiating among 

irreducible schemes is still an open question. In practice, a function that involves 

many arguments will be noisy due to the limited number of events in the time-series. 

We have found that the PDF of the sum of (or, binned) successive waiting times, e. g. 

, can not only be more accurately obtained 

from finite trajectories, but is more discriminatory than the equal successive waiting 

times PDF (Supp. Info.), e. g.  

∫ ∫
∞ ∞

+ −−=
0 121,0 21 ),()()( dtdttttttt yxyx φδφ

),(, ttyxφ  (Cao, 2000). φ  can be easily constructed 

from the trajectory by building the histogram of the random variable t , 

obtained from all adjacent waiting times in the time-series. One can also calculate, in 

addition to the functions themselves, the difference between them and the product of 

the individual waiting time PDFs, e. g. 

21 tt +=

)( 2ty)( 1t) φ , and 

yxyxyx tt φφφφ *)()( −=∆ ++ xφ, where . These differences 

vanish for reducible schemes.  

 

DISCUSSION AND CONCLUDING REMARKS 

 

Given a two-state trajectory, after constructing )(tonφ  and )(toffφ , one should 

immediately determine whether the underlying kinetic scheme is reducible using Eq. 



(1). Due to the finite length of the trajectory, the moments of ),( 21, ttyxφ  can be more 

accurately calculated than the PDF, and should be compared to the corresponding 

products of the moments of )(txφ  and )(tyφ . Another test compares the bulk 

relaxation function (the state-correlation function) obtained directly from the 

trajectory, with the corresponding theoretical result for a TSSM process (Flomenbom 

et al.). The expression for the bulk relaxation function for a stationary TSSM is 

known, in Laplace space, for arbitrary waiting time PDFs (see equation 3.15 in 

Boguñá et al., 2000), so one can plug in the Laplace transforms of the experimental 

)(tonφ  and )(toffφ  into this expression, and invert the result, either analytically or 

numerically, back into the time domain. If the experimental bulk relaxation function 

and the theoretical one for a TSSM process with the experimental )(tonφ  and )(toffφ  

coincide, the scheme is reducible, and no further analysis is required. Another simple 

and informative analysis method involves the trajectory of the waiting times as a 

function of the occurrence index. Correlations between waiting times can be detected 

more easily from this trajectory than the on-off trajectory, and used to learn about the 

scheme transition rates (Fig. 3). 

To conclude, we note that some of the fundamental concepts presented in this 

work were already been used in the analyses of the catalytic activity of individual 

lipase molecules (Flomenbom et al.). In this case, the off waiting time PDF was best 

fitted to a stretched exponent. The bulk relaxation function test was then applied, and 

the kinetic scheme was shown to be irreducible. Additionally, clusters of fast events 

were detected in the ordered off waiting times trajectory (similar to Fig. 3A), 

indicating that single lipase molecules display correlations in their activity. These 

findings were combined to build a kinetic scheme that involves reaction and 



conformational changes simultaneously, and to extract some of the conformational 

and reaction rate values. 
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FIGURE CAPTIONS  

 

Figure 1 On-off trajectories as a function of time. These trajectories were obtained by 

simulating the kinetic schemes shown in Fig. 2K (A) and Fig. 2L (B). The transition 

rate values are given in Fig. 3. 



 

Figure 2 A set of schemes containing black circled off substates and red squared on 

substates, which can be used to produce on-off trajectories. A - F Reducible schemes 

with only reversible connections. G - I Reducible schemes with irreversible 

connections. J – TSSM model described only by the waiting time PDFs )(tonφ  and 

)(toffφ . K - The simplest irreducible model is a four-substate model. L – An example 

of a reducible four-substate model. 

 

Figure 3 Off waiting times trajectories as a function of the occurrence index 

corresponding to the on-off trajectories in Fig. 1, produced from the irreducible (Fig. 

2K), and reducible (Fig. 2L) four-substate schemes. )(tonφ  and )(toffφ  for the two 

schemes are the same, by setting (  is the transition rate from substate i to j),  

, , , 

jik

.0121 =k 09.012 =k 01.032 =k 123 =k , 9.043 =k , & 1.034 =k  for the irreducible 

one, and , , 1818 12 =k.021 =k 36818.0 5.032 5=k , 49.0 523 =k , , &  

, for the reducible one, found by comparing 

405.0=43k

2.034 =k )(sonφ  and )(soffφ  of the two 

models. In the ordered waiting times trajectory from the irreducible scheme similar 

waiting times tend to follow each other (A), where from the reducible one, the waiting 

times are randomly distributed (B). By applying a threshold on this trajectory, which 

separates the fast from the slow events, one can estimate the transition rates k  by 

calculating the average of the fast and slow off waiting times, given by 

ji

)/(1 4323 kk +,t fastoff ≈  and )32k/(1 12k,t slowoff +≈ , and the average number of successive 

fast and slow off waiting times, given by, 2343, kfastoff / kn ≈  and 3212 /2 kk+≈,offn .  slow
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Supplementary information  
 

What can one learn from two-state single molecule trajectories? 

Ophir Flomenbom, Joseph Klafter, and Attila Szabo 

 

To demonstrate the advantage of )(tyx+φ  over ),()( ,, ttt yxyx φφ = , we consider 

the simplest irreducible scheme, which is a four-substate scheme (Fig. 2k). The 

scheme is defined by a set transition rates  (  is the transition rate from substate i 

to j), where substates 1 & 4 belong to the on state and substaes 2 & 3 belong to the off 

state. In what follows we set, 

jik jik

121 =k , pkk =12 , kp)1(k32 −= , , , 

, and determine the effect of changing p (= 0.9 & 0.3) and  (= 0.5, 0.1, & 

0.02) on the shape of 

p−k =123

k

pk =43

kk =34

)(, toffoffφ∆ , )(, toffoffφ , , )(2 toffφ )(toffoff +∆φ , )(toffoff +φ , and 

offoff φφ *  (analytical expressions for these will be given elsewhere). Here,  

determines the asymmetry of the scheme, and for 

k

1=k  the system is symmetric thus 

reducible, and both )(, toffoffφ∆  and )(toffoff +∆φ  consequently vanish.  

)(, toffoffφ∆ , )(, toffoffφ , and  possess the same shape for the parameter 

values examined (Figs. 1sA-1sD). The peak of 

)(2 toffφ

)(, toffoffφ∆  for larger times (Cao, 2000) 

is two orders of magnitude smaller than the maximal signal value (Figs. 1sC-1sF). 

)t(offoff +φ , and offoff φφ *

k

 are more sensitive to changes in the parameters (Figs. 2sA-

2sB). For p=0.9 as  decreases a second peak emerges for )(toffoff +φ  shown as a 

shoulder for k  and as a small peak for 1.0= 02.0=k  (the amplitude of the second 

peak as  can be approximated by ). For p=0.3, where during each off 

event several transitions between substates 2 & 3 occur, both peaks are observable for 

a wide range of k values. 

1→p 2/1
12

−ek

Thus, this example demonstrates that )(toffoff +φ  and )(toffoff +∆φ  (at least for 

some range of parameters as the examined ones) supply more information about the 

scheme details than )(, toffoffφ  and )(, toffoffφ∆ . 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1s A-F )(, toffoffφ ,  (A & D), and )(2 toffφ )(, toffoffφ∆  (B-C & E-F),  for the four-

substate irreducible scheme (Fig. 2K), with the (arbitrary units) parameters, , 

, 

121 =k

pkk =12 kp)1(k32 −= , pk −=123 , pk =43 ,  kk =34 . In each plot, curves for three 

values of  (= 0.5, 0.1, & 0.02) are shown, where for the upper plots p = 0.9, and for 

the lower plots p = 0.3. 

k

)(t,offoffφ∆ , )(, toffoffφ , and  possess the same shape for 

the checked range of parameter values. The large time peak of 

)(2 toffφ

)(, toffoffφ∆  (C & F) is 

two orders of magnitude smaller than the maximal signal value.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 2s A-D 

 

)(toffoff +∆φ , )(toffoff +φ , and offoff φφ *  are shown for the same range of parameters as in 

Fig. 1s. Upper plots (p=0.9): for 5.0=k  the system is close of being symmetric, so 

that )t(offoff +φ  and offoff φφ *  are similar (A), namely, )(toffoff +∆φ  is (relatively to the 

amplitude of the functions themselves) small (B). As  decreases a second peak 

appears in 

k

)(toffoff +φ  representing (i) the two very different timescales of )(toffφ , and 

(ii) the fact that events with similar waiting time are clustered. The peak appears as a 

shoulder for , and as a small peak for 1.0=k 02.0=k  (A), where its amplitude as 

 can be approximated by k . As  decreases, 1→p 2/1−e12 k )(toffoff +∆φ  amplitude 

increases, although its basic shape retains. Lower plots (p=0.3): Here, the amplitudes 

of the two peaks are comparable (C), which is a signature that each off event consists 

of several transitions between substates 2 & 3 occur before leaving to the on state. 

)(toffoff +∆φ  shows the same general behavior with k  as for the higher value of p (D). 
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