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Determination of barrier heights and prefactors from protein folding rate data
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We determine both barrier heights and prefactors for protein folding by applying constraints
determined from experimental rate measurements to a Kramers theory for folding rate. The theo-
retical values are required to match the experimental values at two conditions of temperature and
denaturant that induce the same stability. Several expressions for the prefactor in the Kramers rate
equation are examined: a random energy approximation, a correlated energy approximation, and
an approximation using a single Arrhenius activation energy. Barriers and prefactors are generally
found to be large as a result of implementing this recipe, i.e. the folding landscape is cooperative
and smooth. Interestingly, a prefactor with a single Arrhenius activation energy admits no formal
solution.
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I. INTRODUCTION

In contrast to many exothermic reactions in organic chemistry, the log protein folding rate displays a significant
linear trend with the relative stability of the product and reactant (folded and unfolded states) (Fersht, 1999). This
indicates a late transition state in the language of Hammond’s postulate, and the slope of the log rate vs. stability
line quantifies the degree of native structural information in the transition state.
Native stability may be modified by adjusting temperature T or denaturant concentration c. Many proteins show

linearity over the majority of the branches of their Chevron plot, implying a linear dependence of folding and unfolding
barriers on denaturant concentration c (Jackson and Fersht, 1991):

∆GF‡(T, c) ≡ G‡(T, c)−GF(T, c) = ∆GF‡(T, 0)−mF‡c (I1a)

∆GU‡(T, c) ≡ G‡(T, c)−GU(T, c) = ∆GU‡(T, 0) +mU‡c (I1b)

with mF‡ > 0 and mU‡ > 0.
Subtracting I1b from I1a, and defining ∆G ≡ ∆GFU = GU −GF and m = mF‡ +mU‡ we have that

∆G(T, c) = ∆G(T, 0)−mc (I2)

For 2-state folders the kinetically determined m above equals to good approximation the thermodynamically deter-
mined m-value from relative stabilities.
Applying Kramers rate theory, the log forward folding rate is given by

ln kF(T, c) = ln ko(T, c)−∆GU‡(T, c)/T

= ln ko(T, c)− (∆GU‡(T, 0) +mU‡c)/T (I3)

Eliminating c from equations I2 and I3 gives

ln kF(T, c)−
mU‡

m

∆G(T, c)

T
= ln ko(T, c)−

1

T

(

∆GU‡(T, 0) +
mU‡

m
∆G(T, 0)

)

, (I4)

where the left hand side of I4 depends on both (T, c), but the function on the right hand side depends on c only
through the prefactor. Empirically it was observed by Scalley et al (Scalley and Baker, 1997) that for the proteins
CspB and protein L, the data for various c collapse onto a single curve when the left hand side is plotted vs. 1/T .
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This indicates that the right hand side is a function of temperature alone and so ln ko(T, c) ≈ ln ko(T ). Denaturant
concentration does not have a significant effect on the rate the system escapes from local traps (at least for those
proteins studied). We make this assumption here as well.
Because the prefactor is independent of c, the change in log folding rate with denaturant is directly proportional

to the change in barrier with denaturant:

δ ln kF ≡ ln kF(T, c)− ln kF(T, 0) = − (∆GU‡(T, c)−∆GU‡(T, 0)) /T = −δ∆GU‡/T (I5)

which together with eq. I4 gives

δ∆GU‡ = −(mU‡/m)δ∆G (I6)

δ ln kF = (mU‡/m)(δ∆G/T ) . (I7)

This quantifies the assertion above that log folding rates depend linearly on the relative stability of the products. If
we let mU‡/m ≡ Q 6=, eq. I6 can be rewritten as

δG‡ = Q 6=δGF + (1−Q 6=)δGU (I8)

which is the commonly used linear free energy relation (Bryngelson et al., 1995).
Inspection of rate-stability isotherms for several different proteins (cytochrome C (Mines et al., 1996), protein

L (Scalley and Baker, 1997), cspB (Schindler and Schmid, 1996), N-terminal protein L9 (Kuhlman et al., 1997),
S6 (Otzen and Oliveberg, 2004)) shows linearity over ranges up to ≈ 25kJ · mol−1 ≈ 10kBT , indicating large and
robust folding barriers- substantially larger than the folding barriers seen in many simulations for example (c.f.
figure 1).
At a higher temperature, the log rate vs. stability curve is still linear, with approximately the same slope, indicating

the nativeness of the transition state, in terms of solvent exposure, is not significantly changed (Fig. 1). However the
rates are higher, presumably due to 2 effects: 1.) the prefactor increases at higher temperature (since activated escape
from traps is further facilitated, and solvent viscosity is reduced), and 2.) the thermodynamic weight of the entropic
component to the barrier (which includes contributions from the solvent) increases as well, which may decrease the
barrier height.

II. METHODOLOGY

In what follows we apply Kramers rate theory together with energy landscape ideas to extract barrier heights and
prefactors from experimental rate data.
The temperature dependence of the stability is given by the Gibbs-Helmholtz expression (Fersht, 1999: Jackson and

Fersht, 1991):

∆G(T, c) = ∆H − T∆S +∆CP (T − To − T ln (T/To)) . (II9)

Then at equal stabilities ∆G(To, co) = ∆G(T, c):

∆CP (T − To − T ln (T/To)) = (T − To)∆S +m (c− co) . (II10)

For two-state folders, the heat capacity ratio ∆CP U‡/∆CP is approximately equal to m-value ratio −mU‡/m, giving
the fractional solvent accessibility of the transition state. We assume this equality here as well, which gives for eq. II10:

∆CP U‡ (T − To − T ln (T/To)) = −
mU‡

m
∆S (T − To)−mU‡ (c− co) . (II11)

Inserting eq. II11 into Gibbs-Helmholtz expressions for the barrier heights ∆GU‡ at (T, c) and (To, co) gives the
change in barrier height at fixed stability:

[∆GU‡(T, c)−∆GU‡(To, co)]∆G(T,c)=∆G(To,co)
≡ δ′∆GU‡ = − (T − To)

(

∆SU‡ +
mU‡

m
∆S

)

, (II12)

which is independent of c and depends only on the temperature difference between the two fixed-stability states (and
thermodynamic parameters). This equation applies to points A and B in figure 1 for example.
For changes in temperature of a few degrees, the change in barrier height δ′∆GU‡ is only a few percent of the

total barrier height, when the rates vs. temperature and denaturant are fit to a model to extract thermodynamic
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parameters, as in ref.s (Kuhlman et al., 1997: Otzen and Oliveberg, 2004: Scalley and Baker, 1997: Schindler and
Schmid, 1996). We used equation II12 for the change in barrier height when thermodynamic data were available. For
the case of cytC we set δ′∆G = 0.
The rates for pairs of states at the same stability ∆G are given from eq. I3 as

ln kF(To, co) = ln ko(To)−∆GU‡(To, co)/To (II13a)

ln kF(T, c) = ln ko(T )−∆GU‡(To, co)/T − δ′∆GU‡/T (II13b)

A. Random energy model for the temperature-dependent prefactor

At the mean field level for a landscape of uncorrelated states (Random energy model or REM), the temperature-
dependence of the prefactor in equation I3 is super-Arrhenius (Bryngelson and Wolynes, 1989: Onuchic et al., 1997).
Moreover the prefactor goes as the reciprocal of the viscous friction coefficient (Hanggi et al., 1990: Klimov and
Thirumalai, 1997: Socci et al., 1996), so the log prefactors at (To, co) and (T, c) may be written as

ln ko(To) = ln koo −∆2/2T 2
o (II14a)

ln ko(T ) = ln koo −∆2/2T 2 + ln (η(To)/η(T )) . (II14b)

To compare rate theories with experimental data we must introduce a fundamental time scale or rate constant koo,
which is then modified by barriers representing the ruggedness of the energy landscape. Rates for short loop closure
are about 2 × 107s−1 (Lapidus et al., 2000), comparable to helix formation rates of ∼ 107s−1, and somewhat faster
than rates of hairpin formation ∼ 106s−1 (Eaton et al., 2000). We take 107s−1 as an estimate of the fastest local rate.
Since ∼ 10−100 loops and/or secondary structural elements exist in a protein, we then take koo = 109s−1. We will see
later that larger estimates for koo give larger estimates for inferred folding barriers. We use the known temperature
dependence of the viscosity in water (CRC, 2003). The quantity ∆2 measures the ruggedness of the energy landscape.
It may be eliminated from II14a and II14b to give an equation relating the prefactors:

ln ko(T ) =

(

1−
T 2
o

T 2

)

ln koo +
T 2
o

T 2
ln ko(To) + ln

(

η(To)

η(T )

)

. (II15)

Equations II13a, II13b, and II15 constitute a system of 3 linear equations for 3 unknowns: ∆GU‡(To, co), ln ko(To)
and ln ko(T ), which can be solved analytically at any given stability, from linear fits to the log rate-stability data.

III. RESULTS

The results of applying the method are shown in figure 2, for the data in figure 1, ranging from the stability of
wild type at 296K (−74kJ/mol) to zero stability at the transition midpoint. Barrier heights are plotted in units of
kJ/mol, rates in prefactors are in units of s−1.
We can see several things from this plot. The barrier heights at the transition midpoint are large, compared to

values obtained from simulation models as well as theories with pair interaction potentials. If the linear relation in
eq. I6 held until the transition midpoint, the barrier would be about 30 kJ/mol plus whatever the barrier was at
conditions of zero denaturant.
The slope δ∆GU‡/δ∆G ≈ 0.8 is also larger than its empirical value of mU‡/m ≈ 0.4 (Mines et al., 1996), thus the

barriers vanish at weaker stabilities than the wild type protein. This indicates a breakdown in the validity of the
theory at higher stabilities (larger ∆G).
There are 2 parameters in the theory for which we have put in approximate values: the value of the attempt

frequency koo = 109s−1, and the value of δ′∆GU‡, which we have set to zero for cytochrome C in the absence of
an empirically determined value. Increasing koo or decreasing δ′∆GU‡ raises barriers, but does not change the slope
δ∆GU‡/δ∆G. The value of −∆G where the barrier vanishes linearly decreases as δ′∆GU‡ is decreased below zero, with
the barrier vanishing at the stability of the wild type when δ′∆GU‡ is about −1.6 kJ/mol. This is not an unreasonable
number compared to experimental numbers for other proteins (see below), however it is somewhat disconcerting that
barrier heights are such a strong function of the barrier change δ′∆GU‡. We will see later that this sensitivity is not
present when a correlated landscape model is used for the prefactor.
Figure 2 also shows that at least for the REM approximation it is important to account for changes in the vis-

cosity of the solution with temperature, as the barrier substantially decreases when the viscosity is held constant vs.
temperature.
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Equation II14a or II14b may now be solved for ∆, giving a number ≈ 15 kJ/mol, that only weakly depends on
stability ∆G or barrier change δ′∆GU‡. Estimating the chain conformational entropy as ∼ 100kB (D’Aquino et al.,
1996: Leach et al., 1966), we can give an estimate for the glass temperature TG for this system,

TG = ∆/(2So/kB)
1/2 (III16)

which is also a fairly robust number as a function of stability or barrier change, as shown in figure 3. At the stability
of wild type cyt C, TG ≈ 150K, giving T/TG ≈ 2.0 at 296K.

A. Correlated landscape model for the temperature-dependent prefactor

Many of the problems of the REM approximation are resolved by accounting for pair correlations between states in
the expression for the prefactor. Below a critical temperature TA on a correlated landscape, dynamics are activated,
and the rate prefactor increases as temperature is raised (Plotkin and Onuchic, 2002a,b: Wang et al., 1997). The
expressions for the rate prefactors at To and T become

ln ko(To) = ln koo − (S 6=/2)
(

α− β (1− TG/To)
2
)

(III17a)

ln ko(T ) = ln koo − (S 6=/2)
(

α− β (1− TG/T )
2
)

+ ln (η(To)/η(T )) . (III17b)

Here S 6= is the chain entropy at the transition state, and α and β are parameters measuring the mismatch between
entropy and energy giving the typical free energy barrier governing trap escape. The values for a bulk polymer
α ≈ 0.5, β ≈ 1.8 are used below (Plotkin and Onuchic, 2002a,b: Wang et al., 1997). The temperature TG was adjusted
to the value that reproduced the experimentally determined slope of barriers vs. stability, mU‡/m. In table I this
number is compared to the value of TG that emerges from the REM analysis. A mismatch of these 2 values may
indicate a breakdown of the REM approximation for states in determining prefactors, i.e. a breakdown in the validity
of eq.s II14a,b. For cyt C the value of TG giving the correct slope is about 1.2 kJ/mol, vs. 1.0 kJ/mol from the REM
analysis.
The entropy may be eliminated from III17a and III17b, giving an equation that relates the prefactors, and replacing

eq. II15:

[ln koo − ln ko(T ) + ln (η(To)/η(T ))]
[

α− β (1− TG/To)
2
]

= [ln koo − ln ko(To)]
[

α− β (1− TG/T )
2
]

(III18)

Equations II13a, II13b, and III18 again define a system of 3 linear equations for 3 unknowns: ∆GU‡(To, co), ln ko(To)
and ln ko(T ), which may be solved analytically. The results are shown in figure 4.
We see that both barriers and prefactors are larger than the corresponding REM values, and the analysis for other

proteins yields quite large numbers in general (c.f. table I for numbers). The barriers at the transition midpoint
are about 22kBT300K , and prefactors are almost unactivated. The REM value of TG resulted from approximating a
value of 100kB for the chain entropy So, so it is feasible that this estimate for the REM TG could differ from the
TG that gives the correct mU‡/m. The parameters α and β could in principle have been adjusted to best match the
experimental slope, however it can be shown that this results in the same solution of II13a, II13b, and III18 as that
determined by varying TG.
In contrast to the REM approximation, the effects of the temperature dependence of viscosity were not significant

here (figure 4). Nor were there any significant effects due to barrier height difference- as δ′∆GU‡ changed from −2
kJ/mol to 0 kJ/mol, the barrier changed by less than 2%. The effects due to TG are modest as well: over the range of
TG values in figure 3B, the barrier height changed by less than 15%. Lastly, the prefactors of the correlated landscape
model are nearly constant over the range of experimental stabilities (figure 4), consistent with empirical observations
(c.f. the comments below eq. I4).
Equation III17a or III17b may now be solved for S 6= as a check, giving S 6= ≈ 40kB, or about 40% of the unfolded

chain entropy assumed in finding the REM TG. Alternatively we can estimate the unfolded entropy So from the value
of S 6= as S 6= ≈ (1−mU‡/m)So, then eq. III16 gives ∆ ≈ 14 kJ/mol. Since the variances of individual residues add to
give ∆2, ∆2 ≈ N(1−mU‡/m)b2, where b is a non-native energy scale per residue, here ≈ 0.7kBT300.
Figure 5 shows that the inferred barriers and prefactors increase as the value of the bare reconfiguration rate koo

increases. The prefactor ln ko(To) closely follows the bare reconfiguration rate ln koo, i.e. they are roughly equal. The

barriers at the transition midpoint ∆Go
U‡ and at the stability of the wild-type protein ∆G

(wt)
U‡ increase linearly, as

∼ 2To ln koo.
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In the REM analysis there is an intermediate regime where the prefactor has a more complex temperature depen-
dence than eq. II14a. We do not describe this regime in detail since it is obtained from eq.s III17a and III17b in the
limit that α → 1, β → 2, S 6= → So. Values obtained tended to be bracketed by the REM and correlated models.
For NTL9, the solution of the REM gave a TG that monotonically decreased from a value of 0.4 at the stability

of the wild-type protein, to zero at a stability of about 11 kJ/mol. Similarly the prefactor monotonically increases
from 108s−1 at the stability of the wild-type to 1010s−1 at zero stability. We note that these problems are not present
if the stability difference δ′∆GU‡ is set to zero, if the prefactor is 2 or more orders of magnitude slower, or if the
temperature-dependence of the viscosity is neglected. We take this sensitivity as a shortcoming of the procedure of
rigorously demanding that the landscape theory fit to a limited subset of the experimental data. In this sense a best
(but not exact) fit to experimental rate surfaces as a function of both T and c as in (Kuhlman et al., 1997: Otzen
and Oliveberg, 2004: Scalley and Baker, 1997: Schindler and Schmid, 1996) is likely to give more accurate numbers.
Likewise in the correlated model for NTL9, the prefactor increased from about 108s−1 at the stability of the wild-type
to unphysical values at zero stability. A similar situation exists in the REM recipe for protein S6, however it is
resolved in the correlated landscape model for that protein.
CspB showed some difficulties that arose from its unusually late transition state (mU‡/m ≈ 0.9) (Perl et al., 2002).

The parameter TG in the correlated model could not be adjusted to reproduce the high slope of barrier vs. stability,
without giving negative barriers. Again this may be an artifact of the exact fitting method mentioned above, i.e.
more experimental data may also be needed to obtain more accurate numbers, or it may indicate that a simple
mean field prefactor does not fully adequately describe the folding dynamics of this protein. In this case we took the
temperature TG = 1.81 kJ/mol that induced the barrier to vanish at the stability of the wild type protein. This has
a steep barrier-stability curve, with slope mU‡/m = 0.8 (as opposed to 0.9 observed empirically), very small barrier
(7 kJ/mol at zero stability), and rugged landscape with very slow prefactor (about 102s−1). Such small barriers are
consistent with estimates taken from simulations using Cα-models (Shea and Brooks III, 2001).

B. The Arrhenius model generally admits no solution

A model often proposed for the prefactor assumes an Arrhenius temperature-dependence with single activation
energy EA, so that eq.s II14a and II14b are replaced by

ln ko(To) = ln koo − EA/To (III19a)

ln ko(T ) = ln koo − EA/T + ln (η(To)/η(T )) , (III19b)

from which EA may be eliminated yielding

ln ko(T ) = (1− To/T ) ln koo + (To/T ) ln ko(To) + ln (η(To)/η(T )) . (III20)

This equation relating the prefactors together with eq.s II13a and II13b are the new system of equations to be solved.
Eliminating ∆GU‡ from II13a and II13b gives another equation relating the prefactors:

ln ko(T ) = ln kF(T, c)− (T/To) ln kF(To, co) + δ′∆GU‡/T + (To/T ) lnko(To) . (III21)

Equations III21 and III20 both have ln ko(T ) on the left hand side and (To/T ) lnko(To) on the right. Subtracting
them then gives an equation that is independent of any variable to be solved for:

ln kF(T, c)− (T/To) ln kF(To, co) + δ′∆GU‡/T = (1− To/T ) ln koo + ln (η(To)/η(T )) (III22)

which cannot be true in general, in particular because the left hand side depends on c and the right hand side does
not.
A geometric analog may be helpful in understanding the situation. The solution to 3 equations in 3 variables is

equivalent to finding the point where 3 planes intersect. Letting

x1 = ln ko(To)

x2 = ln ko(T )

x3 = ∆GU‡ ,

equations II13a, II13b, and III20 may be recast as

x2 − (To/T )x1 = A (III23a)

x2 − (To/T )x1 = B (III23b)

x1 − (1/To)x3 = C (III23c)
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where

A = (1− To/T ) lnkoo + ln(η(To)/η(T ))

B = ln kF(To, co) + (To/T ) lnkF(T, c) + δ′∆GU‡/T

C = ln kF(To, co) .

Since A 6= B in general, eq.s III23a and III23b depict two parallel planes. Thus there is no point of intersection and
the system of equations is ill-posed. For the special case of A = B there is a whole family of solutions consistent with
the rate equations, but as mentioned above this scenario can only hold under very special circumstances.

IV. CONCLUSIONS AND DISCUSSION

We have proposed here a method of testing energy landscape theory by mapping Kramers rate theory, with prefactors
given from the statistics of energies of states, to experimental data on protein folding rates. We considered 3 models
for the prefactor here: one where ruggedness is treated with a random energy approximation, one where correlations
are taken into account, and an Arrhenius model with a single barrier dressing reconfiguration times.
The numerical values of the barriers obtained from the above recipes should be taken with a grain of salt, however

it consistently emerged that folding barriers were large (except for CspB): the average barrier at the transition
midpoint for the REM analysis is about 19kBT , and the corresponding barriers in the correlated model is about
18kBT . If CspB is omitted the barriers are 21kBT and 22kBT respectively. Wild-type S6, a protein known to fold very
cooperatively (Lindberg et al., 2002), had the highest barriers.
With the exception of CspB, the prefactors in the correlated model tended to be quite high - approximately the

bare reconfiguration rate for the whole protein (109s−1). The folding barrier obtained from the recipe decreases as
estimates for the bare reconfiguration rate decrease (Fig. 5). The prefactors from the REM recipe varied considerably.
All of the proteins analyzed here are considered 2-state folders, so we would expect a Kramers theory to describe

them. In lower temperature regimes the distribution of first passage times may be more relevant to study (Plotkin
and Onuchic, 2002b: Zhou et al., 2003).
We found that in practice it was quite important to have accurate fits for the empirical rate-stability curves. For

example, as temperature increased, the slope of the log rate vs. stability curve had to remain roughly constant or tend
to increase, to obtain reasonable solutions of the rate equations. Otherwise we found an unphysical situation where
barriers did not increase as stability decreased. This sensitivity to the experimental data may favor a less stringent
fit to the experimental constraints.
In fact, reflection on the procedure raises a general issue on the rigorous application of experimental constraints

to energy landscape theory. For example, if we were to add data at a third temperature T1, two new equations
would be introduced according to the recipe- one Kramers rate equation and one landscape equation for the prefactor,
but only one new variable is introduced- the prefactor ln ko(T1). The system becomes overdetermined. Demanding
equality rather than a best fit at several temperatures becomes too stringent a constraint on the theory, as long as
the parameters in the theory (e.g. ∆2 or EA) are fixed. The more temperatures used, the more variables must be
introduced into the theory, or the parameters must themselves become temperature-dependent. Nevertheless, the fact
that the Arrhenius activation model fails in general to provide a solution for even 2 temperatures (2 data points)
should probably be seen as evidence against its strict applicability.
A perhaps more viable method would be to fit several temperatures with functional forms such as equations II14a,

III17a, or III19a to extract parameters such as ∆2 and EA. The difficulty in previous fits to data has been in the
separation of EA and the activation enthalpy ∆HU‡ (Scalley and Baker, 1997). One can ask which temperature
dependence (EA/T or ∆2/T 2) gives the best fit to the data, but there is not yet enough accurate data to distinguish
between the two scenarios (Kuhlman et al., 1997: Scalley and Baker, 1997) by this method. However the Arrhenius
model becomes severely restricted by applying experimental constraints rigorously at two temperatures and denaturant
concentrations, at the same stability. Because the activation energy in the prefactor can be absorbed into the enthalpic
part of the barrier, and only the entropic part of the barrier is relevant in determining rate differences at fixed stability
(by eq. (II12)), the activation energy becomes irrelevant, and the difference in rates must then be due to quantities
independent of denaturant concentration (entropic part of the barrier, temperature-dependent viscosity. . . ). All
rate-stability curves for a given protein must be parallel in the Arrhenius model- a situation not observed empirically.
Topological features of the native structure have been neglected in the rate theory. Including polymer physics into

the theoretical model (Plotkin and Onuchic, 2000: Portman et al., 2001: Shoemaker et al., 1999) may also eliminate
some of the sensitivity of the theoretically derived values in table I on the experimental data.
Other methods have been used to estimate barrier heights. Adding a 3-body contribution to a pair-wise interacting

energy function to give best agreement with experimental φ-values, a barrier height for protein L of about 16 kJ/mol



was obtained (Ejtehadi et al., 2004). Other proteins such as FKBP and CI2 had larger barriers of 25 kJ/mol and 42
kJ/mol respectively (Ejtehadi et al., 2004). The large barriers observed here also suggest that many-body interactions
may be playing a significant role in the energy function. A variational theory for the free energy surface of λ-repressor
gave a barrier of approximately 12 kJ/mol (Portman et al., 2001). All-atom simulations of a three-helix bundle
fragment of protein A in explicit water gave barrier heights ≈ 17 kJ/mol at the transition midpoint (Garcia and
Onuchic, 2003). Applying Kramers theory with an experimentally determined estimate for the prefactor gave an
estimate for the free energy barrier of about 18 kJ/mol for the cold shock protein CspTm (B.Schuler et al., 2002). An
analysis which took prefactors from experimental data, along with a thermodynamic analysis to extract enthalpic and
entropic contributions to the barrier, gave typical barrier heights of about 30 kJ/mol for the proteins analyzed (Akmal
and Munoz, 2004). However these last two methods found barrier heights under conditions of zero denaturant- the
barrier heights at zero stability would likely be significantly higher. For example, the average 〈(mU‡/m)∆G〉 for the
proteins in table I is about 17 kJ/mol, to be added to the barrier height at conditions of zero denaturant.
Applying this method to a simulation model, where one knows the answers in advance, provides a good control for

the study and is a topic for future work.
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FIGURE CAPTIONS

FIGURE 1: Logarithm of the rate vs. (minus) native stability for horse Cytochrome C, at two temperatures. The
plots are well fit by straight line functions that are used in the analysis of the text. Adapted from Mines et. al. (Mines
et al., 1996).

FIGURE 2: Barrier height ∆GU‡ and prefactors ko at two temperatures, as obtained from the REM approximation
(see text) are plotted as a function of minus stability, for cytochrome C. The wild type protein has a stability of
∆G ≈ 74 kJ/mol. Numerical values are given in table I. Prefactor attempt rates are in s−1, and barrier heights are
in kJ/mol. The short dashed line gives the barrier for a temperature-independent solvent viscosity.

FIGURE 3: (A) The temperature TG that emerges from the REM analysis for cyt-C (see text and eq. III16) varies
only moderately with barrier height change at constant stability, δ′∆GU‡ (the value of which is not known for this
protein). For this plot the stability is set to midway between zero and the stability of the wildtype (37 kJ/mol). (B)
TG also changes little as native stability ∆G is varied (for this plot δ′∆GU‡ = 0).

FIGURE 4: Barrier heights and prefactors as obtained from the correlated landscape analysis (see text), plotted
as a function of minus native stability for h cytC. Numerical values are given in table I. Prefactor attempt rates are
in s−1, and barrier heights are in kJ/mol. The dotted line gives the barrier for a temperature-independent solvent
viscosity. Note prefactors are roughly constant and solvent viscosity plays a minor role.
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FIGURE 5: Barrier heights and prefactors extracted from the recipe for the correlated energy landscape (see text)
increase as the bare reconfiguration rate (defined in III17a and III17b) increases. The increase is linear. ∆Go

U‡ is the

barrier at the transition midpoint, ∆G
(wt)
U‡ is the barrier at the stability of the wild-type protein, and ko(To) is the

prefactor at temperature To in s−1.
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TABLE I: Thermodynamic and kinetic parameters for proteins studied

Correlated Model Random Energy Model

Proteins a
To T ∆G

WT b
δ
′∆GU‡ ∆G

o
U‡

c ∆G
wt
U‡

d
ko(To)

c
T

(m)
G

e ∆G
o
U‡

c ∆G
wt
U‡

d
ko(To)

c
T

REM

G

f

cyt C 2.46 2.60 -74 0 56 27 5×108 1.2 27 0 6 ×103 1.0
NTL9 2.48 2.59 -19 -1.0 47 35 (6× 109) 1.7 50 33 (1010) 0 (0.4) g

S6 2.48 2.56 -31 -1.4 61 39 9× 108 1.2 78 21 (1012) 0 (0.7) g

PTL 2.34 2.43 -22 -0.8 58 45 1×109 1.1 56 27 3×108 0.5
cspB 2.38 2.44 -9 -0.8 7 0 102 1.9 g 24 20 2×105 0.7

aSources for experimental data: cyt C (Mines et al., 1996), NTL9 (Kuhlman et al., 1997), S6 (Otzen and Oliveberg, 2004), PTL (Scalley
and Baker, 1997), cspB (Schindler and Schmid, 1996). All temperatures and energies are in kJ/mol. All rates are in s−1.
bStability of the wild type protein.
cAt the transition midpoint where ∆G = 0.
dAt the stability of the wild-type protein, where c = 0. If the barrier vanished at stabilities below the wild type, the barrier value was

simply taken as zero.
eValue of TG that gives a slope of barrier height vs. stability equivalent to the experimental value of mU‡/m.
fValue of TG using the REM approximation for rates, taken at a stability of about 1/2 of the wild-type protein.
gSee text for explanation and comments.


