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Abstract

This is the second of two papers dedicated to the relationship between

population models of competition and biodiversity. Here we consider species

assembly models where the population dynamics is kept far from fixed points

through the continuous introduction of new species, and generalize to such

models the coexistence condition derived for systems at the fixed point. The

ecological overlap between species with shared preys, that we define here, pro-

vides a quantitative measure of the effective interspecies competition and of

the trophic network topology. We obtain distributions of the overlap from

simulations of a new model based both on immigration and speciation, and

show that they are in good agreement with those measured for three large

natural food webs. As discussed in the first paper, rapid environmental fluc-

tuations, interacting with the condition for coexistence of competing species,

limit the maximal biodiversity that a trophic level can host. This horizontal

limitation to biodiversity is here combined with either dissipation of energy

or growth of fluctuations, which in our model limit the length of food webs

in the vertical direction. These ingredients yield an effective model of food

webs that produce a biodiversity profile with a maximum at an intermediate

trophic level, in agreement with field studies.

1 Introduction

In the first paper of this suite, we have considered coexistence at a fixed point of pop-
ulation dynamics. This is justified for some of the simplest population models, where
it can be shown that the fixed point is both locally and globally stable, such that the
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asymptotic dynamics converges to it. However, the dynamics of more complex eco-
logical models wander on periodic or chaotic attractors. Even when the trajactory
would tend asymptotically to a fixed point, the time necessary to reach it may be
very large, so that disturbances such as immigrations, speciations or environmental
variations can take place before the system effectively attains equilibrium.

In the present paper, we consider coexistence of competing species in the frame-
work of models of species assembly, in which the ecological community is contin-
uously perturbed through immigration, speciation and extinction event that build
up its biodiversity (MacArthur and Wilson, 1967). We argue that the relationship
between the competition matrix and the productivity distribution derived for static
ecosystems can be generalized in the slow assembly regime, in which new species
arrive to the ecosystems over time scales much larger than those of population dy-
namics.

In a previous work (Bastolla et al., 2001), we have modeled an insular ecosystem
characterized by a constant immigration rate and by extinction produced by popu-
lation dynamics. After a transient time, the model ecosystem reaches a statistically
stationary state where the extinction rate and the immigration rate balance, as pre-
dicted by the equilibrium theory of island biogeography (MacArthur and Wilson,
1967).

We have shown that the model yields in a natural way species area relationships
in qualitative agreement with field observations. Despite the fact that space is
not represented explicitly in our model, we represent the area A of the island as
an effective parameter influencing both the immigration rate I and the threshold
density Nc at which extinction takes place. As pointed out by MacArthur andWilson
(1967), the immigration rate is expected to increase with the size of the island. We
assume that I = I0 + kA1/2. The case I0 = 0 corresponds to an immigration rate
proportional to the perimeter. We use it to model immigrations from a continent
to an archipelago. The case k = 0 in which the immigration rate does not depend
on area is used to describe immigration coming from nearby islands in the same
archipelago, since in this case, the immigration rate is expected to depend mainly
on the distance from the closest island. The other parameter depending on area is the
threshold density Nc. We assume that the number of individuals in the population
is relevant for extinction, so that the critical density is inversely proportional to the
area, or Nc ∝ 1/A.

Under the above assumptions, the model reproduces a broad range of observed
Species Area Relationships. The logarithmic Species Area Law, observed for the
central islands of the Solomon archipelago (Diamond and Mayr, 1976), is reproduced
under the hypothesis that the immigration flux is independent of area, I = I0. The
power law S ∝ A0.54, observed by Adler (1992) for the number of bird species on
archipelagos versus their area, is reproduced assuming that I ∝

√
A, a plausible

assumption for archipelagos.
In this paper, we generalize our previous model considering speciation events

beside immigrations. We show that simulations of the new model reproduce quali-
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tatively the distributions of the ecological overlap measured for three large natural
food webs, a quantity that we define here and that allows the characterization of
the food web structure and of the interspecific competition.

We then define and study an effective model for the biodiversity profile in food
webs. In the previous paper, we have showed that environmental fluctuations on
time scales much shorter than those of population dynamics, combined with a coex-
istence condition for competing species, limit the maximal biodiversity the system
can host. This role of rapid environmental fluctuations complements the result that
fluctuations on slower time scales can promote biodiversity through mechanisms such
as the storage effect and the non-linearities in the environmental response (Chesson,
2000).

Our effective model of biodiversity consists of the condition on the maximum
allowed biodiversity at each trophic level, combined with equations obtained from
population dynamics for the across level variation of the competition overlap, the
biomass density and the fluctuations in rescaled growth rates. This effective model
produces a profile of biodiversity versus trophic level presenting a maximum at
intermediate level, in qualitative agreement with field observations (Cohen et al.,
1990). A mean field study of the model was preliminarily reported in (Lässig et al.,
2001).

2 Species assembly through immigration and spe-

ciation

Here, we generalize our previous species assembly model (Bastolla et al., 2001),
including speciation events in it. Some features of this new model have been de-
scribed in (Bastolla et al., 2002). For a recent review of several models of food webs
structure, dynamics and assembly, see (Drossel and Mc Kane, 2003).

In our model, biodiversity arises from a balance between species origination
through immigration and speciation events, and extinction of species resulting from
population dynamics. The ecosystem is continuously maintained far from the fixed
point of population dynamics through species origination events that occur regularly,
at time intervals equal to Tmig. Eventually, a state of statistical equilibrium is
reached where the average properties do not vary with time.

As described in the companion paper, population dynamics equations have the
form of generalized Lotka-Volterra equations,

1
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where the superindex stands for the level where the species belongs. The dynamical
variables ni are rescaled population densities, ni =

√
βiiNi, where Ni is the popula-

tion density and βii, defined in the first paper, is proportional to the inverse of the
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carrying capacity, βii = αi/N
∗

i . The coefficient η < 1 is the efficiency of conversion
of prey biomass into predator biomass, and it is assumed to be independent of level.
The coefficients of the Predator Functional Response, γ̃

(l)
ij , and the death rates α̃

(l)
i

have been rescaled dividing them by
√
βii.

Using rescaled variables, the competition overlaps ρij are dimensionless param-
eters with ρii ≡ 1. We assume that ρij for i 6= j is proportional to the predation
overlap qij , ρij = λqij , where qij is defined as the fraction of common preys shared
by species i and j. Introducing a predation matrix πik, such that πik equals one if
k is a prey for i, and zero otherwise, the predation overlap is formally defined as

qij =

∑

k πikπjk
√

∑

k πik
∑

k πjk

. (2)

This definition guarantees that qij is one if and only if species i and j share ex-
actly the same preys. Since competition for common preys is already implicitly
represented through the prey dynamics, the coefficients ρij model competition for
resources not explicitly included in the ecosystem. The reason for the proportionality
between the non diagonal elements of the competition matrix ρij and the predation
overlap qij is that we expect that species sharing more preys are more closely related
ecologically, so that their overall requirements are more similar.

The population dynamics equations are complemented by a threshold density
nc =

√
βiiNc below which a species is considered extinct and is eliminated from the

system. The community is maintained by a number of external resources, which are
represented as extra populations Ni with intrinsic growth rate γi0R and predators
only. The dimensionless parameter R/Nc, ratio between the carrying capacity de-
termined by the external resources and the density threshold for extinction, plays
an important role in controlling the biodiversity in the model.

The introduction of new species is modelled as follows. First, we choose at
random one of the species present i which acts as “mother species” for the new
one, with label i′ = i + 1 (old species with j > i are renumbered accordingly).
Three parameters define the similarity between i and i′ regarding their preys and
predators. Each link of the mother is (i) either deleted from the daughter species
with probability pdelete, (ii) or copied with probability pcopy, (iii) or redirected to
another species with the complementary probability 1− pdelete − pcopy. After this is
done, with probability pnew a new link is added, such that i′ gets a new prey or a
new predator.

The links that are copied mutate their strength with respect to that of the
mother species according to the stochastic rule γi′j = (γij + δγmaxξ) /(1 + δ), where
ξ ∈ [1,−1] is a randomly chosen number, γmax is the maximal allowed value of
the connection strengths, and δ = 0.05. For newly extracted links, the connection
strength is chosen uniformly in the interval [0, γmax]. New preys are extracted only
in the set of species with j < i′, while new predators are extracted in the set of
species with j > i′. This condition is imposed in analogy with the cascade model
(Cohen et al., 1990), and prevents the formation of feeding loops.
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In the limit pcopy → 0, the introduction of new species proceeds through pure
immigration, as in our earlier model (Bastolla et al., 2001). When pcopy → 1 the
daughter species are most similar to their mothers, apart from deletions and addi-
tions of links and small mutations in the link strength. This mimics a system where
biodiversity is maintained by speciation rather than immigration events.

3 Productivity distribution in species assembly

models

In our simulations, population dynamics never reaches a fixed point between two
immigration events: the system contains species with a positive growth rate as well
as species with a negative growth rate, which are slowly driven towards extinction.
These can be either unsuccessful immigrants or resident species outcompeted by
newly arrived ones. As in our earlier model (Bastolla et al., 2001), the system
reaches a stationary state where the average biodiversity does not vary with time.
This stationary biodiversity increases as a power law of the immigration rate 1/Tmig

and as the logarithm of the external resources R/Nc.
To get analytical insight on this species assembly model, we note that in the

stationary state the typical time required for the extinction of one species must co-
incide with the time between arrivals of new species, Tmig. Species that get extinct
more rapidly than this do not contribute to the stationary biodiversity. This im-
plies the following condition for species that belong to the instantaneous transient
community:

1

ni

dni

dt
≥ − 1

Tmig
. (3)

This equation generalizes the fixed point equations that we studied in the first
paper, which correspond to the limit Tmig → ∞. We can apply this condition to
one-layer communities or structured food webs, as we already did in the case of fixed
point coexistence. Applying a mean field approximation to the effective competition
matrix, the condition of coexistence in transient communities can be generalized to

〈p〉 − pi
〈p〉 ≤ 1− nc/〈n〉

1 + Sρ/(1− ρ)
+

1

〈p〉Tmig
, (4)

where pi is the effective rescaled growth rate arising both from preys and predators of
species i, after eliminating the effective competition with species with shared preys
(see the companion paper). Here and elsewhere, angular brackets denote averaging
over species at the same trophic level.

If the quantity 〈p〉Tmig is large, i.e. for slow immigration rates, the system can
get close to the fixed point, and the above equation modifies only slightly the result
for static systems (Tmig → ∞) presented in the previous paper, which is equivalent
to a previous result by Chesson (1994). Therefore, in the slow immigration regime
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Figure 1: Distribution of the normalized productivity pi/〈p〉 at the first trophic level.
Insert: variance of the productivity distribution versus the number of species. The
dashed line is the best fit of the variance with V ≃ (a+ S/S0)

−1. In this simulation,
the ecological parameters have values αi = 1, for all i, β = 1, γmax = 2, R = 103,
Nc = 1 for the three curves. The parameters for the speciation process differ in
each case: for S1 = 5 we used pcopy = 0, pdelete = 0.2, and pnew = 0.2; for S1 = 7.4
parameters are pcopy = 0.4, pdelete = 0.6, and pnew = 0.2; finally, for S1 = 17 we had
pcopy = 0.8, pdelete = 0, and pnew = 0.2.

the variance of the distribution of the pi’s decreases as 1/S, as for systems at the
fixed point.

For more frequent immigration (smaller 〈p〉Tmig), the variance of the productivity
distribution increases. Thus it becomes easier to pack a larger number of species in
the ecosystem, in agreement with the results of our simulations, where the stationary
biodiversity increases as a power law of the immigration rate 1/Tmig (Bastolla et al.,
2001), and consistently with the predictions of the theory of island biogeography
(MacArthur and Wilson, 1967).

We show in Fig. 1 the productivity distribution for the first trophic level of
the simulated ecosystem. As expected, the distribution is narrow, and its variance
decreases with the number of species S1 (see Insert), the inverse of the variance
being well fitted with a linear function of S1, as predicted by Eq.(4).

In addition to the dependence of biodiversity on the immigration rate, the num-
ber of species at the stationary state also increases as the fraction of speciation
events gets larger (growing pcopy). Also this behavior is easy to rationalize through
Eq. (4). In fact, new species originated through speciation have a higher probability
of remaning in the ecosystem, since all of their ecological parameters are similar to
those of their mother species, which have been already selected through the ecolog-
ical dynamics. Thus a larger fraction of speciation events implies a higher effective
rate of appearance of new species.
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4 Ecological overlap in real and model ecosystems

To characterize the structure of food webs, we have studied the distribution of the
ecological overlap, defined in Eq. (2). The overlap distribution is a property that
bears the fingerprint of the topology of the species network. In the framework
of species assembly models, this distribution is influenced both by the process of
species origination, either through immigration or through speciation, and by the
extinctions driven by population dynamics. Furthermore, the overlap distribution
can be measured in real food webs for which sufficiently detailed information is
available, and in this way it allows to compare the results of our model with empirical
observations.

We show in Fig. 2 the overlap distribution obtained from simulations of our
model for non-basal species above the first trophic level. To better compare differ-
ent ecosystems, the delta function at overlap equal to zero is eliminated and the
continuous part of the distribution is normalized to one. The peaks that one sees
arise from the discreteness of the system: the number of prey per species is a small
integer number. Peaks at high overlap are produced by speciation events, while
peaks at small overlap are due to distantly related species.

In the insert of Fig. 2, we notice that the fraction of species with overlap equal
to zero increases with the number of possible preys at trophic level one, S1. This is
expected on the ground of the following simple calculation, based on a mean-field
argument. We assume that all species at level two have k < S1 preys at level one,
and that these preys are chosen at random. Neglecting terms of higher order in
1/S1, we can compute the average predation overlap as q = k/S1. Under these
assumptions, the distribution of the overlap is expected to be Poissonian, so that
the expected fraction of pairs with zero overlap is given by P{q = 0} = exp(−k/S1),
which is an increasing function of S1.

We have considered three of the largest food webs analyzed in field studies: A
freshwater marine interface (Ythan estuary, see Huxham et al., 1996), a lake (Little
Rock, see Martinez, 1991), and a community associated to a single plant (Silwood
Park, see Memmott et al., 2000). They have been studied in enough detail to allow
a statistical characterization of their network structure (Montoya and Solé, 2002).
For these three large food webs, we have calculated the overlap between all pairs of
predators as defined in Eq. (2), and we have obtained the overlap distribution and
the average overlap, q̄.

The Ythan estuary food web, described in (Huxham et al., 1996), is formed by
S = 134 species and contains 592 links from predators to preys. Of these species, 42
are metazoan parasites contributing to a total of 52 top species. Only 5 species are
basal. The average number of preys per predator is 6.4 and the number of predators
per prey 4.6. The average overlap for this food web is q̄ = 0.102.

Silwood park network is constituted by trophic interactions between herbivores,
parasitoids, predators, and pathogens associated with a single plant, the broom
Cytisus scoparius (Memmott et al., 2000). This web is formed by 154 species, of
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Figure 2: Overlap distribution for species at level larger than one in the model
ecosystem. A delta function in zero has been removed. Insert: the probability that
the overlap is exactly zero increases with the number of possible preys at level one.
All parameters as in Fig. 1.

which 66 are parasitoids, and 60 predators. There are 117 top species and a total of
370 links: the average number of preys per predator is 2.4, the number of predators
per prey is 10, and the average overlap between predators is q̄ = 0.134.

Finally, the study of Little Rock lake (Martinez, 1991) reports a total of 182
consumer, producer, and decomposer taxa. This is a highly lumped food web:
in Little Rock, 63% of “species” correspond to genera-level nodes. This lack of
resolution is probably responsible for systematic statistical deviations, as the fact
that some “species” have a very large number of predators or preys. The network
has 2430 links from predators to preys, 63 basal species and a single top species.
The average number of preys per predator is 20.4, and the number of predators per
prey is 13.4. The average overlap between predators is q̄ = 0.195.

In Fig. 2 we represent the distributions of overlaps P (qij) for the three natural
food webs described above. For the sake of comparison, we also show a distribution
obtained in our simulations, with the parameters shown in the figure caption. The
comparison shows that our model is able to reproduce overlap distributions in good
agreement with field observations, at least in some range of its space of parameters.
The probability that the overlap is zero is also in reasonable agreement with field
data: its value is 0.7 in the Ythan and Little Rock food webs, and 0.8 in the Silwood
food web. This values are quite comparable with those shown in the insert of Fig.2
for the model ecosystems.
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Figure 3: Overlap distribution for natural ecosystems. We have calculated the
overlap distribution for the three large food webs cited in the text. The dashed line
was obtained from a simulation of the model ecosystem with parameters pcopy = 0.72,
pdelete = 0.2, and padd = 0.3. The other model parameters are as in Figs. 1 and 2.

5 Environmental fluctuations and biodiversity pro-

files in food webs

We have shown in the companion paper that the combination of a general condition
for coexistence of Sl species competing at trophic level l and an effective model of
short time scale environmental fluctuations yields the following limit on biodiversity:

Sl ≤ 1 +

(

1− ρl
ρl

)(

1−∆l − nc/〈nl〉
∆l

)

, (5)

where ρl is the typical competition overlap between a pair of distinct species at level
l, 〈nl〉 is the average rescaled density of the Sl competing species, nc is the threshold
density below which extinction takes place, and ∆l represents the minimal width of
the productivity distribution at level l compatible with environmental fluctuations.
The variability ∆l is considered level dependent, since fluctuations in productivity
propagate along the trophic chain and are expected to increase at higher levels
(see below). This is important for characterizing the variation of biodiversity with
trophic levels and the length of food webs.

In (Lässig et al., 2001) we have used Eq. (5), with level-independent ∆l ≡ ∆, in
order to get an analytical insight on the biodiversity of a hierarchical trophic web.
We assumed that the biodiversity at level l is the maximal one allowed by Eq. (5).
The validity of this assumption depends on the species assembly process, and we
think that it is plausible for mature food webs, where there was enough time for
filling all ecological niches.

Using the above assumption, we can define an effective model for the biodiversity
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profile across the trophic levels of hierarchical food webs. Being extremely simpli-
fied, this model presents the advantage that it can be solved analytically through
some further approximation, and that the main processes responsible for the biodi-
versity profile can be individuated rather clearly. The model predicts under general
conditions that biodiversity has a maximum at an intermediate trophic level, as
observed in real food webs.

For fixed biodiversities Sl, we can calculate the average rescaled densities 〈n(l)〉
through a mean field approximation of the generalized Lotka-Volterra equations
describing the population dynamics on the trophic web:

〈n(l)〉 ≈
cηγ̃(l)〈n(l−1)〉 − cSl+1

Sl

γ̃(l+1)〈n(l+1)〉 − α̃(l)

1− ρl + Slρl
, (6)

where c ≥ 1 is the average number of preys per predator, which is assumed to be
independent of level, cSl+1/Sl is the resulting average number of predators per prey,
η < 1 is the efficiency of conversion of prey biomass into predator biomass, also
assumed to be independent of level, γ̃(l) is the average rescaled rate at which preys
at level l − 1 are consumed for unit of predator at level l, and α̃(l) is the average
death rate or energy consumption rate of species at level l. In the calculations, for
simplicity, the two last quantities were assumed to be independent of l.

Inserting the densities 〈n(l)〉 in Eq. (5), we obtain the maximum allowed biodiver-
sities {Sl}. This procedure is applied iteratively, until convergence to a stable profile
〈n(l)〉 and {Sl} that solves simultaneously the maximum coexistence condition and
the mean-field equations for the densities.

For all parameters sets we studied, the resulting 〈n(l)〉 decreases approximately
as a negative exponential of l, as a result of metabolic energy dissipation along the
food chain. In order to improve the analytical understanding of the model, we adopt
in the following this phenomenological relationship, assuming that

〈n(l)〉 ≈ R exp (−l/l0) . (7)

Aside the decrease across levels of the rescaled biomass density, the other effect
that limits the length of the food web in this model is the propagation of the fluctu-
ations along the chain, which determine an increase of the width of the productivity
distribution as

∆l ≈ ∆0 exp (l/l∆) . (8)

A justification of this ansatz is provided in next section.
To fully define the model, we still need an effective model for the variation of the

overlap ρl across the level. For this purpose, we assume that each of the Sl species
at level l is coupled to c species at the level below, provided there are more than
c species at that level; otherwise it is coupled to all species: cl = min(c, Sl−1). We
consider two different ways in which these connections are drawn, leading to two
different models for the overlap:
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1. The connections are drawn at random. In this case, the fraction of common
links between two species at level l is ql = cl/Sl−1. We further assume that
the competitive overlap ρl is proportional to the link overlap ql: ρl = λql, with
λ ≤ 1. We interpret λ as the fraction of limiting factors that are represented
by the species at the level l − 1. We thus have

ρl = λcl/Sl−1 (9)

Sl = 1 +
(

Sl−1

λcl
− 1

)

(

1−∆l − Nc

R
el/l0

∆l

)

2. In the second case, we consider that the Sl species are divided into Sl/σl

clusters of size σl. Species in different clusters are not in competition. Species
in the same cluster compete with the maximal possible overlap ρ = λ. We get

σl = 1 +
(

1

λ
− 1

)

(

1−∆l − Nc

R
el/l0

∆l

)

Sl = Sl−1/clσl . (10)

In both cases, at small l and for a broad range of parameters, biodiversity in-
creases at low levels: S2 > S1.

At high levels, the second term in brackets on the rhs of Eq(10) becomes small
and the biodiversity decreases with the level, either because n(l)/Nc decreases with
l, Eq. (7), or because the minimal width of the productivity distribution, ∆l, grows
with l, Eq. (8). Thus our model food webs present a maximum in the distribution
of the biodiversity per level in a broad region of parameter space (Lässig et al.,
2001). This result is consistent with studies of real food webs, where the maximum
of biodiversity is attained at the second or third trophic level (Cohen et al., 1990).

Eventually, biodiversity is limited by either of the two mechanisms to just one
species. This defines the maximum food web length in our model.

The qualitative description outlined above is supported by numerical computa-
tions of the full effective model, and by simulations of the species assembly model.

Summarizing, in the framework of this model the biodiversity profile is shaped
by two very simple processes: horizontal (within level) competition, limiting the
maximum biodiversity at each trophic level, and vertical (across level) hardening of
competition, either due to the propagation of fluctuations (the growth of ∆l with
the level), or to energy dissipation (the decrease of nl with the level).

6 Propagation of perturbations along a food chain

Here we justify the assumption that the minimal width of the distribution of rescaled
growth rates increases for higher levels along a food web: ∆l ∝ exp(l/l0). This
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assumption was used in the previous section to yield a limitation on biodiversity at
high levels, and ultimately to constrain the maximal length of food webs.

For simplicity, we consider a food chain with just one species per level. In this
way, we do not have to consider the number of species at each level as an additional
unknown parameter coupled to ∆l through Eq(5). We start from the system of
equations that determine the fixed point of a food chain with linear prey dependent
functional responses,

ηγlnl−1 − αl − nl − γl+1nl+1 = 0 . (11)

As usual, the level specific densities nl and the parameters γl (coefficients of the
functional response) and αl (death rate) have been rescaled so to that the coefficient
of the self-damping term equals one.

The equations can be solved iteratively starting from the lowest level in the form

nl = pl −
γl+1nl+1

Bl
(12)

where the rescaled growth rates pl and the rescaled self-damping terms Bl are re-
cursively given by

pl =
pl−1 − αl/(ηγl)

γl/Bl−1 + 1/(ηγl)
(13)

Bl = 1 +
ηγ2

l

Bl−1

(14)

We now consider a perturbation that changes the (fictitious) growth rate at level
zero by a relative amount ∆0 = (p′0 − p0)/p0. This perturbation propagates along
the food chain, leading to relative changes in the growth rates equal to

∆l =
∆l−1

1− αl/(ηγlpl−1)
> ∆l−1 . (15)

This is larger than ∆l−1 because all the factors in the denominator are strictly
positive and, moreover, η is smaller than one. Since pl decreases at higher levels, the
factor 1/(1 − αl/(ηγlpl−1)) also increases with the level, so that ∆l increases even
faster than exponentially with l. This rapid amplification of perturbations along the
food chain justifies our expectation that the distribution of rescaled growth rates
becomes broader with the level.

7 Discussion

In this paper, we have generalized to transient ecological communities far from fixed
points the coexistence conditions derived in the companion paper for systems at the
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fixed point. Also in the general case, species with rescaled growth rates much lower
than average will disappear very rapidly and will not be observed.

For systems maintained out of equilibrium through immigration, the relevant
time scale is given by the inverse of the immigration rate. A non zero ratio between
the immigration rate and typical growth rates of the population dynamics, 1/〈p〉Tmig,
makes it easier to fulfill the coexistence condition. This analytical result leads to
the prediction that the biodiversity in the stationary state of the species assembly
model increases with the immigration rate, as observed in the simulations.

Coupling the coexistence condition with the unavoidable fluctuations in produc-
tivity values (due to environmental noise with time scale much smaller than that
of population dynamics), we predicted in our previous paper that competition and
fluctuations limit the maximum biodiversity that can be hosted in a trophic level.
This result complements, but does not contradict the prediction that environmen-
tal fluctuations with time scale comparable to that of population dynamics enhance
species coexistence (Chesson, 2003a; 2003b). It would be desirable to develop a more
general theory of the interaction between environmental fluctuations and population
dynamics from which the two results can be derived.

The coexistence condition also depends on the typical competition overlap be-
tween species at the same trophic level. We have defined the competition overlap to
be proportional to the predation overlap qij , defined through Eq. (2). The distribu-
tion of the overlap is a useful property for characterizing the structure of ecological
networks. Our modified model of species assembly through immigration and speci-
ation yields overlap distributions in good agreement with those obtained from three
well-studied natural food webs: the Ythan estuary, the Little Rock lake, and the
Silwood Park system.

These steps allowed us to define an effective model for the variation of biodiversity
across the levels of a hierarchical food web. In our model, two main processes control
biodiversity: competition, on the horizontal within-level direction; and modulation
of competition, on the vertical across-level direction.

In the framework of the effective model, this last process controls the decay of the
number of species across higher levels, and therefore the length of food webs, an issue
that received a considerable attention in the ecological literature (see for instance
Post, 2002 for a recent review). Accomodating more competing species becomes
harder at higher levels, because of two complementary mechanisms: the dissipation
of metabolic energy across the food web, which make energetic constraints more
difficult to fulfill, and the propagation of environmental perturbations across the
food web, which makes it more difficult to fine tune ecological parameters in order
to accomodate new species.

The first mechanism is reminiscent of the so-called productivity hypothesis for
the length of food webs, which goes back to almost 80 years ago (Elton, 1927).
However, weak or no correlation was found between food chain length and primary
productivity in field studies (Briand and Cohen, 1987; Post et al., 2000). These
and other results suggest that resources limit the length of food chains below some
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threshold level, above which other factors come into play (Post, 2002).
The other mechanism proposed here, relating food chain length to the ampli-

fication of environmental perturbations across the chain, is a novel variant of the
stability hypothesis that states that environmental disturbance limits the length of
food webs (Menge and Sutherland, 1987). This hypothesis was originally founded
on the observation that the dynamical stability of model ecosystems decreases as
chain length increases (Pimm and Lawton, 1977). However, the generality of this
model result was later questioned (Sterner et al., 1997). The mechanism proposed
here constitutes a new theoretical justification for the disturbance hypothesis, which
is supported by some empirical evidence, but only indirectly (Post, 2002).

In addition, simulations of the species assembly model provide a third mecha-
nism that may limit the length of food webs. In the simulations, longer food webs
can be generated by increasing the immigration rate, which makes the coexistence
condition more permissive and increases the overall biodiversity, therefore allowing
more opportunities for dynamically generating longer networks. A positive relation
between colonization and food chain length was also suggested in another model of
species assembly (Holt, 1996). Assuming a relation between the size of the ecosys-
tem and the immigration rate, the effect of the immigration rate may explain the
observed positive correlation between food chain length and ecosystem size (Post,
2000), to date the strongest empirical determinant of food chain length found in
field studies.

This work can be extended in several directions. The most important, in our
opinion, would be to build a mechanistic model in which environmental fluctuations
are explicitly modelled, instead of including them in an effective way as we have done
here. This might permit a more quantitative comparison between model results
and parameters and the relevant mechanisms and variables operating in natural
ecosystems.
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