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Abstrat

It is widely reognized that the leaving rate of a restrition enzyme

on target DNA sequenes is several orders of magnitude faster than the

maximal one alulated from the di�usion�limited theory. It was there-

fore ommonly assumed that the target site interation of a restrition

enzyme with DNA has to our via two steps: one�dimensional di�u-

sion along a DNA segment, and long�range jumps oming from assoi-

ation/dissoiation events. We propose here a stohasti model for this

reation whih omprises a series of 1D di�usions of a restrition en-

zyme on non-spei� DNA sequenes interrupted by 3D exursions in

the solution until the target sequene is reahed. This model provides

an optimal �nding strategy whih explains the fast assoiation rate.

Modeling the exursions by unorrelated random jumps, we reover the

expression of the mean time required for target site assoiation to our

given by Berg & al. (Berg, et al., 1981), and we expliitly give several
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physial quantities desribing the stohasti pathway of the enzyme.

For ompetitive target sites we alulate two quantities: proessivity

and preferene. By omparing these theoretial expressions to reent

experimental data obtained for EoRV�DNA interation, we quantify:

i) the mean residene time per binding event of EoRV on DNA for a

representative 1D di�usion oe�ient, ii) the average lengths of DNA

sanned during the 1D di�usion (during one binding event and during

the overall proess), iii) the mean time and the mean number of visits

needed to go from one target site to the other. Further, we evaluate

the dynamis of DNA leavage with regard to the probability for the

restrition enzyme to perform another 1D di�usion on the same DNA

substrate following a 3D exursion.

Keywords: stohasti, di�usion, restrition enzyme, target site, DNA
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Introdution

Geneti events often depend on the interation of a restrition enzyme

with a target DNA sequene. Indeed, the restrition enzyme has �rst to �nd

this sequene on DNA. This mehanism has long remained mysterious. The

simplest model onsiders this mehanism as a reation between two point�

like entities, the restrition enzyme and its target DNA sequene, in a solute

volume. However, kineti measurements of reativity show that the reation

ours at an extraordinarily rapid rate, far above the three-dimensional dif-

fusion limit rate! (Rihter, et al., 1974; Riggs, et al., 1970). To aount for

this, it was proposed that the reation ours via a "failitated" di�usion pro-

ess (Von Hippel, et al., 1989). The restrition enzyme �rst binds to DNA

on a non�spei� site, then performs a one�dimensional random walk until it

reahes the target DNA sequene. Indeed, it is by sanning the DNA and not

by di�using in a 3D volume that the restrition enzyme reahes its target

site sequene. However, results from experiments (Szzelkun, et al., 1996)

using two interlinked rings of DNA (plasmid, eah ontaining a target site

for the restrition enzyme EoRV) rule out this possibility: the mehanism

of target site loalization does not involve a unique 1D di�usion along DNA.

If it were the ase, the EoRV enzyme would leave the DNA of only one of

the two rings, as opposed to what is observed. Moreover, it is expeted that

moleular rowding of in�vivo situations must hinder any long 1D sanning

proess of the DNA (Wenner, et al., 1999).

To aount for the fast assoiation rate, several strategies have been pro-

posed and modeled from experimental data (Berg, et al., 1981; Von Hippel, et al., 1989;

Winter, et al., 1981). Four major transloation proesses were identi�ed (we
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reall that transloation is the overall proess by whih a protein goes from

one DNA sequene to another). The �rst, the "sliding" proess, orresponds

to the pure one�dimensional di�usion as disussed above. The seond, the "

intersegmental transfer" (Milsom, et al., 2001), involves dimer proteins hav-

ing two binding sites. The restrition enzyme bound on DNA at the �rst site

binds its seond site to a remote DNA sequene and then dissoiates from

the �rst one. The two other transloation proesses are indued by several

dissoiation-reassoiation events. Aording to the rebinding of the enzyme

either near the departure site or to an unorrelated site, the transloation

proess is alled "hopping" or "jumping" (Halford, et al., 2002). Whih of

these transloation proesses or whih ombination of them desribes the

mehanism of target site loalization on DNA is still an open question.

Understanding the transloation proess is of great importane as it gov-

erns the kinetis of geneti events (Misteli, 2001). Several experimental in-

vestigations were arried out in order to eluidate the pathway followed by a

restrition enzyme to reah a single target site. Some of them quantify the

rate of leavage reations, by varying the length of the DNA strand (for a re-

view, see (Shimamoto, 1999)) or the salt onentration (Winter, et al., 1981;

Lohman, 1986) whih a�ets the binding properties of DNA-a�ne proteins

on non-spei� sequenes. These experimental results allows one to rejet

the possibility of a unique transloation proess, but an not fully desribe

the struture of the ombined proess. Berg & al. (Berg, et al., 1981) had

proposed a theoretial approah to quantify the relevant parameters of the

loalization of a single target site. Their model desribes the overall searh-

ing proess omprising the primarily enounter of the enzyme with a DNA
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domain and the seondary enounter of the enzyme with the target site. Here

we deal with the unvisited ase of two ompetitive target sites in order to

quantitatively analyze the physial proprieties of the seond enounter, i.e.

the target site loalization of a restrition enzyme initially bounded to the

DNA. Only the study of suh systems gives aess to the detailed pathway

of seondary enounter with well de�ned initial onditions. Related exper-

imental studies with two di�erentiable target sites loated at well�de�ned

positions on the DNA strand (Langowski, et al., 1983; Terry, et al., 1985;

Stanford, et al., 2000) allows one to handle two desriptive quantities: the

preferene and the proessivity of the restrition enzymes. The preferene is

the ratio of the number of enzymes whih reat with one target site, over the

number of enzymes whih reat with the other target site. The proessivity

is the fration of enzymes whih will reat suessively with the two target

sites. To extrat from these experiments physial parameters of the enzyme

pathway suh as the proportion of time spent by the enzyme on the DNA,

the average number of dissoiation/assoiation events and the average DNA

length sanned prior to the target site loalization, it is neessary to build a

reliable physial model that an mimi the biologial situation.

Here, we propose a simple and general stohasti model to desribe the

kinetis of target site loalization of a restrition enzyme on DNA, whih

expliitly ombines any 1D motion along the DNA and 3D exursions in the

solution. In the partiular ase of 1D di�using motion, our model allows one

to reover the analyti expression for the mean time needed for the enzyme

to �nd a single target site on DNA given by Berg & al. (Berg, et al., 1981).

This mean time presents an optimum, orresponding to the quikest �nd-
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ing strategy whih an be disussed in the ases of point�like and extended

target sites. The model expliitly gives the mean number of enzyme visits

on the DNA and the proportion of the DNA visited until the target site is

loalized. For two target sites, our model provides theoretial expressions for

the preferene and the proessivity fators. These expressions involve two

unknown physial parameters: the 1D and 3D residene frequenies λ and

λ′
. We show that λ is easily evaluated from the onfrontation of the theoret-

ial preferene to experimental data. The seond unknown parameter λ′
, of

minor physial relevane, is extrated from the assumption that the searhing

strategy is optimal whih will be justi�ed. The omparison of the theoretial

proessivity fator to experimental data allows us to predit the value of a

dynami�assoiated parameter: the probability that after an exursion the

enzyme will assoiate to the same DNA substrate it has left, πr.

The artile is onstruted as follows : �rst we give the general bakground

of suh an approah and we present the hypothesis of our model. Then we

dedue the mean searh time from the study of the density of the �rst time

passage, and for the ases of point�like and extended target sites we disuss

the optimal strategy in order to �nd the most quikly as possible the target

site. We give the ondition of existene of this optimal strategy as well

as its quantitative harateristis. We disuss the value of the optimal 1D

frequeny and evaluate �nite-size e�ets. Equation 12 gives the mean target

site loalization time for an enzyme whih starts from a random position on

the DNA. The omplete distribution of the number of visits of the protein

on the DNA is expliity determined. In partiular, its mean value is given by

Eq. 18. The average number of distint bp visited on the DNA is given by
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Eq. 21. Seond, the preferene and the proessivity fators of the restrition

enzyme for two target sites, as funtions of the distane between the target

sites, are obtained (Eq. 36 and Eq. 39) and ompared with experimental

results onerning EoRV (Stanford, et al., 2000). The omparison gives us

the residene time on the DNA per binding event and other related physial

quantities. We then numerially obtain the mean time needed for the enzyme

to go from the �rst target site to the seond target site (using Eq. 37),

and the mean number of visits on the DNA substrate before the two target

sites are leaved. In onlusion, we disuss the predited value of πr de�ned

previously.

Model

We present our model in the framework of a generi protein searhing

for its target site on the DNA. The ase of dimer proteins whih an bind

simultaneously to two target sites is not investigated in order to disard inter-

segmental transfers. As a �rst approximation, the "hopping" transloation

proess is assumed to be represented e�etively in the 1D di�usion of the

protein. Then, the pathway followed by the protein, onsidered as a point-

like partile, is a suession of 1D di�usions along the DNA strand and 3D

exursions in the surrounding solution (Fig.1). The time spent by the protein

on a DNA strand during eah binding event is assumed to follow an expo-

nential law with dissoiation frequeny λ. This law relies on a Markovian

desription of the hemial bond whih is ommonly used. The probability

for the protein to be still bound to DNA at a random time t (knowing that

it is bound at t = 0) is then P (T > t) = exp(−λt), and the probability that
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the protein leaves the DNA at a random time T in the interval [t, t + dt] is

P (t < T < t+ dt) = λ exp(−λt)dt.

The one�dimensional motion on DNA an be modeled from a ontin-

uous Brownian motion with di�usion oe�ient D. As it is usually done

(see for instane (Jeltsh, et al., 1998)), we assume that the extremities of

the DNA hain at on the protein as re�eting boundaries. Thus, a protein

when reahing an extremity during a binding event is re�eted and ontinues

its one-dimensional motion. The target site sequene is a spei� sequene

of base-pairs (e.g. the restrition enzyme EoRV, reognizes the sequene

GATATC (Taylor, et al., 1989). The reation ours when the reative do-

main of the protein mathes the target site sequene. To a �rst approxi-

mation, we model the target site sequene as being a perfet reative point

(Fig.2). The reation is assumed to be in�nitely fast as soon as the protein

meets the target site. Note that in this ase the protein an �nd the target

site only by di�using along DNA. The preise mehanism of this elementary

at is still subjet to disussion. In partiular, the pro�le of the DNA�protein

interation potential is unknown, and ould be attrative over an extended

area. It is then reasonable also to treat the ase where the target site is a

zone of �nite extension 2r (Fig. 3). In that ase the target site an then be

reahed either by di�usion along the DNA, or by oming diretly from a 3D

exursion. This seond approah, developed further, gives rise to strongly

di�erent behavior of the searh time.

As a �rst approximation, the exursions are assumed to be unorrelated in

spae. Hene, when dissoiating from DNA, a protein will rebind at a random

position. In other words, the probability to reah a site on DNA after an
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exursion is uniformly distributed along the whole DNA moleule. It has been

suggested (Winter, et al., 1981) that for not exessively onentrated long

moleules in solution the DNA strands form disjoint domains diluted in the

medium. A protein whih reahes suh a DNA domain will be trapped in it.

In this ase exursions might be orrelated due to the geometri on�guration

of the DNA. As the on�guration of a polymer strand in solution is a random

oil, even short three dimensional exursions an lead to a long e�etive

transloation of the linear position of the protein on DNA. Consequently, a

small number of long range transitions is su�ient to unorrelate the protein

position on DNA.

We now introdue three basi quantities used in this work. The �rst one,

P3D(t), is the probability density that the protein in the solution at time

t = 0 will bind DNA at time t at a random position:

P3D(t) = λ′ exp(−λ′t) (1)

where the distribution of the time spent during an exursion is assumed

to follow an exponential law with frequeny λ′
orresponding to a mean time

spent in the surrounding solution τ ′ = 1/λ′
. Aounting rigorously for the

entire law is beyond the sope of this work. Rather we onentrate here on

the harateristi time τ ′, whih exists and is �nite as soon as the system

is on�ned; and the exponential tail of the law, whih proves to be valid in

most plausible geometries. We will show that this model aptures the main

relevant harateristis of the problem.
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The seond quantity, P1D(t|x), is the onditional probability density that

the protein, being on the DNA at position x and at time t = 0, will dissoiate

at time t without any enounter with the target site. Assuming that the

dissoiation rate is independent of the state of the protein, one has:

P1D(t|x) = λ exp(−λt)Q(t|x) (2)

where Q(t|x) is the onditional probability density that the protein, start-

ing from the position x, does not meet the target site during its one dimen-

sional di�usion. Introduing j(t|x) as the probability density of the �rst

passage to the target site position at time t without dissoiation, one gets

Q(t|x) = 1−
∫ t

0
j(t′|x)dt′.

The last quantity, P̄1D(t|x), is the onditional probability density that the

protein, being on DNA at position x and at time t = 0, will �nd the target

site for the �rst time at time t during its one dimensional di�usion, without

leaving the DNA:

P̄1D(t|x) = exp(−λt)j(t|x). (3)

Given these quantities, the �rst passage density of the protein to the

target site an be alulated, �rst in the ase of one target site, and then we

will extend it for two target sites.

First passage density
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By alulating the �rst passage density, we obtain the mean time needed

for the protein to �nd its spei� target site, as well as all assoiated moments.

We assume that the protein starts at t = 0 linked to the DNA at position x.

We onsider a generi event (Fig.2) whose bulk number of exursions is n−1,

the residene times on DNA t1, . . . , tn and the exursion times τ1, . . . , τn−1.

The probability density of suh an event, for whih the protein �nds the

target site for the �rst time t time t =
∑n

i=1 ti +
∑n−1

i=1 τi is:

Pn(t|x) = P̄1D(tn)P3D(τn−1)P1D(tn) . . . P1D(t2)P3D(τ1)P1D(t1|x) (4)

where P1D(t) and P̄1D(t) are averaged over the initial position of the

protein: P1D(t) = 〈P1D(t|x)〉x and P̄1D(t) =
〈
P̄1D(t|x)

〉
x
. We denote by M

the DNA length on the �left� side of the target site and by L the length on

the �right� side of the target site. The average of a funtion f over the initial

position x is given by 〈f(t|x)〉x ≡ 1

L+M

∫ L

−M
f(t|x)dx.

To obtain the density of �rst passage at the target site, F (t|x), we sum

over all possible numbers of exursions and we integrate over all intervals of

time, ensuring that t =
∑n

i ti+
∑n−1

i τi. The average over the initial position

of the protein, F (t) = 〈F (t|x)〉x, an be expressed as:

F (t) =

∞∑

n=1

∫
∞

0

dt1 . . . dtndτ1 . . . dτn−1δ

(
n∑

i=1

ti +

n−1∑

i=1

τi − t)

)
(5)

[
n−1∏

i=1

P3D(τi)

][
n−1∏

i=1

P1D(ti)

]
P̄1D(tn)
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Taking the Laplae transform of F (t), F̂ (s) =
∫

∞

0
dte−stF (t), we obtain:

F̂ (s) =
〈
ĵ(λ+ s|x)

〉
x



1−

1−
〈
ĵ(λ+ s|x)

〉
x

(1 + s/λ) (1 + s/λ′)





−1

. (6)

ĵ(s|x) being the Laplae transform of j(t|x). This expression ompletely

solves our problem for any 1D motion. We will see in the next setion that

the main quantities of physial interest an be extrated from this formula.

Optimal searh strategy

The relevant quantity to desribe the protein/DNA assoiation reation

is the mean time 〈µ〉 neessary for the protein to �nd the target site (see

above). This mean time is obtained from the derivative of the �rst passage

density by the following relation:

〈µ〉 = −
(
∂F̂ (s)

∂s

)

s=0

(7)

whih ombined with Eq. 6 gives:

〈µ〉 =
1−

〈
ĵ(λ|x)

〉
x〈

ĵ(λ|x)
〉
x

(
1

λ
+

1

λ′

)
(8)

This expression is very general and holds for any 1D motion. Now, we al-

ulate this quantity for a free 1D di�usion. The one�dimensional Laplae
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transform of the �rst passage probability density is well known (see the text-

books (Redner, 2001)):

if x > 0, ĵ(λ|x) = cosh

(√
λ

D
x

)
− tanh

(√
λ

D
L

)
sinh

(√
λ

D
x

)
(9)

if x < 0, ĵ(λ|x) = cosh

(√
λ

D
x

)
+ tanh

(√
λ

D
M

)
sinh

(√
λ

D
x

)
(10)

Averaging over x, we �nally obtain

〈
ĵ(λ|x)

〉
x
=

1

M + L

√
D

λ

[
tanh

(√
λ

D
L

)
+ tanh

(√
λ

D
M

)]
. (11)

where D is the one dimensional di�usion oe�ient. Then the mean

searh time takes the following form:

〈µ〉 =
(
1

λ
+

1

λ′

)




√
λ
D
(L+M)

tanh
(√

λ
D
L
)
+ tanh

(√
λ
D
M
) − 1





(12)

Some omments about this expression are in order. First, we reover in a

simple and diret way the original result of Berg et al. (Berg, et al., 1981),

obtained from a omplete desription of the 3D motion (Berg, et al., 1976;

Berg, et al., 1977; Berg, et al., 1978).

Seond, this quantity is minimum when the target site is entered (as

expeted for symmetry reasons).
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Third, as soon as the length of the DNA strand is large enough (more

preisely as soon as

√
λ
D
L ≫ 1 or

√
λ
D
M ≫ 1), 〈µ〉 grows linearly with the

length of the DNA strand. This mirrors the e�ieny of the 1D and 3D

ombined motion when ompared to the quadrati growth obtained in the

ase of pure sliding. In partiular, the boundary e�ets are negligible for this

quantity as soon as the overall length is large enough.

Last, this expression is valid for a very large lass of 3D motions. More

preisely, it holds as soon as the mean �rst return time τ3D orresponding to

the 3D motion is �nite and independent of the departure and arrival points.

The orresponding expression of the mean �rst passage time is obtained by

replaing λ′
by 1/τ3D.

We now ome to an important question, already present in the seminal

work of Berg et al.(Berg, et al., 1981) and reently addressed by Slutsky &

al (Slutsky, et al., 2004), whih onerns the optimum strategy for suh a

oupled motion. Indeed, it seems reasonable that 〈µ〉 is large for both λ

very large (in the λ in�nite limit, the protein is never on the DNA), and

λ very small (pure sliding limit). It has been suggested from qualitative

arguments (Slutsky, et al., 2004) that the mean searh time is minimumwhen

the protein spends equal times bound to the DNA and freely di�using in the

bulk.

Here, we more preisely address this question of minimizing the mean

searh time with respet to the 1D frequeny λ. This is the only speially

�adjustable� (depending strongly on the struture of the protein) parameter:

λ′
depends on the properties of the environment and will not vary signi�antly

from one protein to another. The 1D di�usion oe�ient D is a spei�
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quantity, and optimizing the searh time with respet to this parameter is

trivial: D should be as large as possible (note that D and λ are assumed to

be independent).

The sign of the derivative at λ = 0 of the mean searh time gives the

following riterion for having a minimum

λ′ > 15D
L2 +M2 − LM

L4 +M4 + 4LM(L2 +M2)− 9M2L2
(13)

In fat, it an be shown that this su�ient ondition is also neessary. If

this ondition is ful�lled, a areful analysis of the impliit equation satis�ed

by the frequeny at the minimum leads to the following expansion for large

ℓ = L+M

λ = λ′ − 4

√
Dλ′

ℓ
− 8D

ℓ2
− 40D3/2

√
λ′ℓ3

+O

(
1

ℓ4

)
. (14)

Equations 13 and 14 re�ne the result of Slutsky, whih however holds

true in the large ℓ limit, or more preisely for

√
λ
D
ℓ ≫ 1. For intermediate

values of ℓ boundary e�ets beome important and the minimum an be

signi�antly di�erent.

The 〈µ〉 value at the minimum is partiularly interesting. We ompare it

to the ase of pure sliding where 〈µs〉 = ℓ2/(3D):

〈µ〉
〈µs〉

=
6

ℓ

√
D

λ
(15)

The e�ieny of the 3D mediated strategy is therefore muh more important
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when the DNA hain is long. For example, using the λ and D values obtained

in the setion of the results and for a DNA substrate of length 106 bp, the

mean target site loalization time when pure sliding is one thousand fold

greater than that predited by our model.

Further quantitative features of reative pathways

In this paragraph, we ompute two quantities whih haraterize more

preisely the nature of the reative paths. These quantities are of speial in-

terest as they ould be experimentally measured using single�moleule teh-

niques.

The �rst quantity is the distribution p(N) of the number of visits on DNA

required before reahing the target site. We reall that in the initial state

the protein is bounded to the DNA, therefore N ≥ 1. The distribution an

be obtained by slightly modifying the expression of the �rst passage density

Eq.5:

p(N) =

∫
∞

0

dt 〈PN (t|x)〉x

=

∫
∞

0

dt

∫
∞

0

dt1 . . . dtndτ1 . . . dτn−1δ

(
n∑

i=1

ti +

n−1∑

i=1

τi − t)

)

×
[
n−1∏

i=1

P3D(τi)

][
n−1∏

i=1

P1D(ti)

]
P̄1D(tn)

(16)

Finally, this distribution happens to be a geometri law with parameter

〈
ĵ(λ|x)

〉
x
:

p(N) =
〈
ĵ(λ|x)

〉
x

(
1−

〈
ĵ(λ|x)

〉
x

)N−1

(17)

This demonstrates that the mean number of visits before reahing the target
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site is:

〈N〉 = 1〈
ĵ(λ|x)

〉
x

=

√
λ
D
(L+M)

tanh
(√

λ
D
L
)
+ tanh

(√
λ
D
M
) (18)

The following form holds:

〈µ〉 = (〈N〉 − 1)

(
1

λ
+

1

λ′

)
(19)

Note that the large N limit is transparent (〈µ〉 is a suession of approxi-

mately N 1D exursions of average duration 1/λ and N 3D exursions of

average duration 1/λ′x).

The seond interesting quantity is the average number of distint base

pairs visited before the protein reahes its target site. In our ontinuous

desription, this orresponds to the average span 〈S〉 of the 1D motion. For

sake of simpliity, the target is here assumed to be entered on the DNA

strand of half length L. The average span an be expressed as the integral

over the position x on the DNA of the probability that x has been visited

before reation. One then obtains:

〈S〉 =
∫ L

−L

dx

∫
∞

0

dtF0̄(x, t) =

∫ L

−L

dxF̂0̄(x, s = 0) (20)

where F0̄(x, t) is the �rst passage density at x with adsorbing onditions

at x = 0, whose Laplae transform will be expliitly omputed in the next

setion in the ontext of ompetitive targets. Antiipating formula Eq.27,
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the span �nally reads:

〈S〉 = 2

∫ L

0

dx




1 +

cosh
(√

λ
D
(L− x)

)
sinh

(√
λ
D
(L+ x/2)

)

cosh
(√

λ
D
L
)
sinh

(√
λ
D
(L− x/2)

)





−1

(21)

Apparently, this integral form an not be substantially simpli�ed, but its

overall behaviour, and in partiular the λ dependene, is easily leared up.

The span appears to grow monotonously from

3

4
L at λ = 0 to L for λ → ∞.

This monotoniity, as opposed to the existene of a minimum for the mean

searh time, is a striking feature of this quantity, plotted in �gure 6.

Extended target site

As mentioned above, the model of a point�like target site disregards the

possibility of the protein reahing the target site diretly from a 3D exursion.

For this reason, we have to study the ase where the target site is an area of

extension r. We will now show that this new feature signi�antly hanges the

behaviour of the searhing time. The reation is still assumed to be in�nitely

fast; it ours either when the protein reahes the boundary of the reation

area during a sliding round, or when the protein omes on the reation area

diretly after a 3D exursion. Following the sheme already developed to

derive the density of the �rst passage time (6), one obtains:

F̂ (s) =

(〈
ĵ(λ+ s|x)

〉
∗

+
2r

L+M

) 
1−

1− 2r
L+M

−
〈
ĵ(λ+ s|x)

〉
∗

(1 + s/λ) (1 + s/λ′)





−1

.(22)

where 〈f〉
∗
= 1

L+M
(
∫
−r

−M
fdx+

∫ L

r
fdx). The average searh time then reads
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(we only give the ase L = M for sake of simpliity):

〈µ(r)〉 =
(
1

λ
+

1

λ′

) (ℓ− r)
√

λ
D
− tanh((ℓ− r)

√
λ
D
)

r
√

λ
D
+ tanh((ℓ− r)

√
λ
D
)

(23)

For ℓ large enough, the minimum is obtained for

λmin ≃

(
λ′ r +

√
λ′2r2 +Dλ′

)2

D
(24)

It is remarkable that the saling λmin ≈ λ′
holds true only for λ′ ≪ D/r2.

For larger frequenies λ′
, we have λmin ≈ 4λ′2r2/D. The value of the searh

time at the minimum 〈µ(r)〉min is modi�ed. For r small we get:

〈µ(r)〉min =
2ℓ√
λ′D

− 2ℓr

D
+O(r2) (25)

whereas for larger r the expansion reads:

〈µ(r)〉min =
ℓ

λ′r
− Dℓ

4λ′2r3
+O(1/r5) (26)

We now onsider the ase of two target sites in order to ompare the

model to experimental results.

Case of two ompetitive target sites

The biologial system (Stanford, et al., 2000) onsists in integrating two

target sites for the restrition enzyme EoRV on a 690 bp linear DNA sub-

strate. The position along a DNA strand of the �rst target site, whih will be

alled target 1, is �xed and equals 120 bp. The seond target site, whih will
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be alled target 2, has been plaed at 54 bp, 200 bp, and 387 bp from the �rst

target site. Thus, three substrates (Fig.5) were used to analyze the kinetis

of DNA leavage. Eah assay was arried out at a very low onentration of

enzyme with regard to the onentration of DNA . For higher onentration

of enzyme, the probability for two �or more� moleules ating on a same

DNA strand would be not negligible. The leavage of DNA produes di�er-

ent lengths of DNA. An enzyme an ut target 1, target 2, or both, resulting

in 5 lengths of fragments. The authors observed the initial formation of four

of these: A, BC, C and AB types.

The advantage of this onstrution is that the �rst leavage proess gives

a starting point to eluidate how EoRV will leave the seond target site. In

ontrast, when using onstrutions with one target site, the primary pathway

of the enzyme to reah the DNA domain an dominate the kinetis of the

searh proess. For example, in highly diluted DNA solutions, the DNA

domains are separated by long distanes and then the mean time spent by the

enzyme in reahing a DNA domain will ontribute in a nonegligible manner to

the total mean time needed to �nd the target site. Moreover, our theoretial

model supposes that the enzyme starts on the DNA and therefore does not

omprise the primary enounter. This assumption agrees with the ase of

experimental substrates with two target sites .

Conditional searh time density

In order to get a better understanding of this proess we �rst study an-

alytially the distribution of the searh time t of one target, for instane 2,

knowing that no reation ourred at target 1. We denote by F1̄(2, t) this
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onditional searh time density averaged over the initial ondition. We make

use of the general method developed in the �rst setion to derive this quan-

tity. Indeed, this problem involves a ombination of 3D exursions and 1D

motions, its peuliarity being that the 1D motion is a onstrained di�usion,

as reation with target 1 is exluded. It su�es then to rewrite formula Eq.6

as follows:

F̂1̄(2, s) =
〈
ĵ1̄(λ+ s|2, x)

〉
x



1−

1−
〈
ĵ1̄(λ+ s|2, x)

〉
x
−
〈
ĵ2̄(λ+ s|1, x)

〉
x

(1 + s/λ) (1 + s/λ′)





−1

(27)

The �rst fator

〈
ĵ1̄(s|2, x)

〉
x
is the Laplae transform of the �rst passage

density at 2 avoiding 1 for a standard 1D di�usion, and orresponds to the

last exursion before �nding the target 2. In turn, the term proportional

to

(
1−

〈
ĵ1̄(λ+ s|2, x)

〉
x
−
〈
ĵ2̄(λ+ s|1, x)

〉
x

)
/s is the Laplae transform of

the survival probability density, and omes from the suession of non rea-

tive exursions on DNA. Theses quantities are obtained by standard meth-

ods, onsidering suessively the initial ondition on fragment A (with mixed

boundary onditions), B (with absorbing boundary onditions), and C (with

mixed boundary onditions). This �nally yields to

〈
ĵ1̄(λ|2, x)

〉
x
=

1

ℓ

√
D

λ




tanh

(√
λ

D
c

)
+

cosh
(√

λ
D
b
)
− 1

sinh
(√

λ
D
b
)





(28)
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and

〈
ĵ2̄(λ|1, x)

〉
x
=

1

ℓ

√
D

λ




tanh

(√
λ

D
a

)
+

cosh
(√

λ
D
b
)
− 1

sinh
(√

λ
D
b
)





(29)

where a, b, c denote the length of fragments A,B,C respetively. This set

of equations fully desribes the problem, and will be used in next setion to

analyze experimental data. In partiular the mean onditional searh time

ould be dedued straightforwardly from Eq. 27; its expliit form is not given

here for sake of simpliity.

Preferene and proessivity

In order to get quantitative measurements of the pathway of the enzyme,

the authors of (Stanford, et al., 2000) introdued two onepts: preferene

and proessivity. The value of the preferene P quanti�es the preferential

use of the target 2 by EoRV. The P value is experimentally obtained by

taking the ratio of the initial formation rate νAB of AB substrates (resulting

from leavage at the target site 2), over the initial formation rate νBC of BC

substrates (resulting from leavage at the target site 1).

P =
νAB

νBC
(30)

The proessivity quanti�es the fration of the leaved DNA that is leaved

�rst at one target site then leaved at the seond target site during the en-

ounter of the DNA substrate with an enzyme. The proessivity of the restri-
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tion enzyme on the target 2 to the target 1, an be dedued from experimental

data by introduing the proessivity fator: fp21 = (νC − νAB)/(νC + νAB).

One an de�ne in the same manner a symmetri quantity, whih is the

proessivity fator of the reation with the target 1 and then target 2:

fp12 = (νA − νBC)/(νA + νBC) and then the total proessivity fator whih

represent the fration of both proessive ations:

fp =
νA + νC − νAB − νBC

νA + νC + νAB + νBC

. (31)

The next setions deal with these two quantities obtained from our model

by onsidering the enzyme-to-target(s) assoiation rate, namely ν1, ν2, ν21,

and ν12 whih are de�ned by the following elementary reations, instead of

substrate rate prodution:

DNA −→ A+BC with rate ν1

DNA −→ AB + C with rate ν2

DNA −→ A+BC −→ A+B + C with rate ν21

DNA −→ AB + C −→ A+B + C with rate ν12

(32)

We assume that a restrition enzyme hits a DNA moleule at site x with

homogeneous probability per unit time κdx/(L + M). The enzyme on-

entration is hosen su�iently small so that multiple enounter events are

negligible. Consequently, a fragment BC (or AB) an be ut into B and C

(or A and B) only if the enzyme whih leaves the DNA moleule to give BC

(or AB) remains on this fragment (the probability of this event, depending
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in detail on the hemial mehanism, will be denoted pinit) and then �nds

the site 2 (or 1). The reation rates is then:

ν1 = κ

∫ t

−∞

dt′
∫

DNA

dx

L+M
F2̄(1, x, t− t′) = κ

〈
F̂2̄(1, x, s = 0)

〉
x

(33)

and

ν12 = κpinit

∫ t

−∞

dt′F (1, 2, t− t′)

∫ t′

−∞

dt′′
∫

DNA

dxF1̄(2, x, t
′ − t′′)

= κpinitF̂ (1, 2, s = 0)
〈
F̂1̄(2, x, s = 0)

〉
x

(34)

where the quantity Fz̄(y, x, t) is the �rst passage density at point y at time

t starting from x and avoiding z. This quantity is aessible analytially

using Eq.27. The quantity F (y, x, t) is the �rst passage density at point y at

time t starting from x. The two other rates ν2 and ν21 are straightforwardly

obtained by permutation of symbols 1 and 2. One is now able to derive the

proessivity and preferene fators.

Results

We reall that the lengths of fragments A, B and C are denoted by the

lower�ase letters a, b and c respetively. First, we evaluate the 1D frequeny

λ from the omparison of the theoretial preferene to experimental data.

Then, using the value of λ′
whih satis�es the optimal searhing time (this

assumption is justi�ed below), we dedue several quantities related to the

enzyme pathway whih links the �rst target site to the seond one. Last, by

omparing the analytial expression of the proessivity fator to experimental

data, we introdue a dynami�assoiated parameter: the probability that
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after an exursion the enzyme will assoiate to the same DNA substrate it

has left, πr.

Preferene

The preferene for the target site 1 over site 2 is given by

P =
E2

E1

=
νAB

νBC

=
ν2 − ν12
ν1 − ν21

=

〈
F̂1̄(2, x, s = 0)

〉
x〈

F̂2̄(1, x, s = 0)
〉
x

(35)

where νx = dx/dt is the rate for forming the speie x, whih an be measured

experimentally. Expliitly:

P =
tanh(

√
λ
D
c) + (cosh(

√
λ
D
b)− 1)/ sinh(

√
λ
D
b)

tanh(
√

λ
D
a) + (cosh(

√
λ
D
b)− 1)/ sinh(

√
λ
D
b)

(36)

This form whih expresses the preferene as funtion of b, and reveals in

partiular that the preferred target site is the losest to the middle of the

moleule, well �ts the experimental data (Fig.7) and allows one to determine

the only free parameter

√
λ/D. The best �t is obtained for:

√
λ/D =

8.7.10−2 bp−1
. For a representative fast one-dimensional di�usion oe�ient

D = 5.105 bp2/s (Erskine, et al., 1997), the 1D frequeny is λ = 37.5 s−1
.

Then the average time spent by the restrition enzyme on DNA per visit

equals 0.027 s and the average distane sanned per visit (

√
16D/πλ) is 260

bp. Using Eq. 21, we obtain a representative average number of distint sites

visited on the DNA during the searhing proess: < S >≃ 320bp.

Enzyme pathway

A further analysis requires to know the value of the parameter λ′
, whih
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depends strongly on experimental onditions, suh as DNA onentration. It

ould be obtained experimentally as the protein/DNA assoiation rate, and

we here hoose a typial value orresponding to the optimal searh strategy,

i.e. λ = λ′
. This assumption is supported by the fat that the target site lo-

alization is several order of magnitude faster than the di�usion limit. Using

the same alulation as from Eq. 5 to Eq. 12 without averaging on the initial

position of the enzyme, we obtain the mean time needed by the restrition

enzyme to go from the target 1 to the target 2:

〈µ〉 =


1− 1

cosh(
√

λ
D
b)




 (b+ c)

(
1

λ
+ 1

λ′

)

tanh(
√

λ
D
b) + tanh(

√
λ
D
c)

− 1

λ′




(37)

Then the average searh time of the target 2 for a reative pathway of

an enzyme starting from the target 1, with inter�site spae of 54 bp, is by

using the formula 37: 〈µ〉 ≃ 0.016s. The average number of DNA visits

before the proessive leaving is, using the formula 19, N ≃ 1.3. . The same

quantities for the other inter-target site distanes, namely 200 bp and 387

bp, are respetively: 〈µ〉 ≃ 0.072s, N ≃ 2.4; and 〈µ〉 ≃ 0.10s, N ≃ 2.9.

Proessivity

Using the previous results, the proessivity fator takes the following

form:

fp =
ν12 + ν21
ν1 + ν2

= pinitF̂ (1, 2, s = 0) (38)

Here we have to re�ne the derivation of F̂ (1, 2, s = 0), i.e. the probabil-

ity to ever reah 1 starting from 2. The ruial point is about the dilution
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approximation, hene we treat the ase of one single enzyme. We take into

aount the fat that during eah 3D exursion the protein an esape, there-

fore being de�nitely lost. We introdue by πr the probability of return after

a 3D exursion. Rigorously this quantity depends on physial parameters

suh as the DNA length and the typial size of its attrative domain. As the

lengths of DNA substrates are onstant in the experiments of Stanford et al.

(Stanford, et al., 2000) for whih b + c = 570bp, we onsider a onstant πr.

We �nally obtain:

fp = pinit


ĵ(λ|2, 1) +

πr

〈
ĵ(λ|x)

〉
x
(1− ĵ(λ|2, 1))

1− πr + πr

〈
ĵ(λ|x)

〉
x




(39)

Where

〈
ĵ(λ|x)

〉
x
is given by the Eq. 11 with L = c and M = b, and where

ĵ(λ|2, 1) is the Laplae transform of the �rst passage density at 2, starting

from 1 whih is given by Eq. 10 with x = M = b:

ĵ(λ|2, 1) = cosh(

√
λ

D
b) (40)

Using the value of λ obtained previously, there are 2 unknown parameters:

pinit and πr. They an be determined from the experimental data (Fig.8);

the best �t is obtained for pinit = 0.5 and πr = 0.85. However, these values

an be not very aurate as it is used to be the ase when estimating two

parameters by �tting experimental data with theoretial results.

We will disuss some possible hypotheses arising from the two last �tted

parameters in the following onlusion.
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Conlusion

So far, experimental investigations have allowed one to disriminate be-

tween two transloation proesses, pure sliding or pure jumping. To obtain

quantitative measurements for suh a ompound transloation proess, it is

neessary to build a physial reliable model, as Berg & al. (Berg, et al., 1981)

did for a single target site. The model presented here permits us to obtain

numerous quantities determining the pathway followed by a restrition en-

zyme in �nding one target site or two ompetitive target sites on DNA, by a

series of 1D di�usion periods (sliding) followed by 3D exursions (jumping).

The orresponding mean searh time shows that suh a two-step proess is

faster than pure sliding or pure 3D di�usion. The existene and the opti-

mization of suh a searh time is disussed. The length dependene of the

optimum was obtained.

Using the preferene data from assays on EoRV (Stanford, et al., 2000),

we quantify the parameter haraterizing the pathway of EoRV, namely

the 1D residene frequeny λ. Other quantities were extrated from this

parameter: the mean distane sanned by the restrition enzyme during one

binding event (260 bp), the distribution of the number of visits on DNA

prior to leaving the target site and the average number of distint DNA

sites visited. It should be notied that the small value of the mean distane

sanned might be due to the assumption of a perfet reative target site

whih leads to an over�estimated λ. In fat, an imperfet reative target site

would derease the preferene. Using the data on proessivity for EoRV, we

introdue two seondary parameters haraterizing the detailed pathways of

the restrition enzyme after DNA leavage. These parameters ome into play
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when more than one target site is present on the DNA. The �rst parameter

is the probability for the enzyme to stay (after leavage with a target site)

on the DNA strand whih harbors the seond target site. It was assumed

that this probability equals 1/2 as the DNA sequenes whih border the

target site are almost symmetri. Our best �t suggest that the probability

is fairly 0.5, justifying the ommon assumption. The seond parameter πr is

the probability for the enzyme to rebind on the leaved DNA strand it had

left during an exursion. Beause of the short length of DNA substrates, it

is assumed that the enzyme is "lost" after the dissoiation from the DNA.

This means that the enzyme rebinds unvisited DNA substrates after eah

3D exursion. Therefore, this probability had been previously assumed to be

negligible. Our model reveals that this probability is high (0.85) whih shows

that the enzyme frequently rebinds to the same DNA substrate. The high

value of πr may be explained by the fat that the fragment length ℓ (whih

is here b + c = 570bp) is signi�antly larger than the persistene length

(150 bp). The on�guration of the DNA is therefore lose to a globule,

in whih the protein an be trapped and hene esape with a rather low

probability. However, πr may be overestimated beause of our assumption of

negleting the orrelations between the starting and �nishing points of the

3D exursions. Indeed, these orrelations would result (for small values of

the inter-target distane b) in inreasing the proessivity fator, and therefore

lowering πr. Note that an imperfet reation would lower the proessivity,

as in this ase the enzyme an pass trough the target site without reat,

therefore inreasing the probability of a de�nitive departure from the DNA

strand.
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The present model lassi�es the stohasti pathway followed by a re-

strition enzyme searhing for its target site, by quantifying the dynamial

parameters. Our work is in the framework of stohasti dynamis whih di-

tates the biologial proesses ourring in the highly strutured and rowded

medium of in-vivo systems. Moreover, this model an be helpful for generi

situations where a protein has to �nd a target site on a DNA substrate, e.g.

the numerous transription fators needed to trigger the gene ativation.

We are grateful to M. Barbi, G. Oshanin, and J.M. Vitor (LPTL) for useful

disussions. We are also grateful to J. Coppey and M. Jardat for spei� omments

on the manusript. The numerous pertinent omments, ritiisms and suggestions

given by one referee were deeply appreiated.
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Figure legend

Figure 1. A representative path of the restrition enzyme whih reahes

the target site. Exursions in the solution are represented by dashed lines, one-

dimensional di�usion by ontinuous lines. The �lled square is the target site.

Figure 2. Representative view of the model. Here the the protein exeutes

three exursions before �nding the target site.

Figure 3. Extended target site.

Figure 4. Shemati representation of the three substrates of length 690 bp.

The position of the seond target site relative to the �rst target equals 54 bp, 200

bp and 387 bp, respetively.

Figure 5. The mean searh time plotted against the one-dimensional resi-

dene frequeny λ. The length of DNA is 5000 bp, the three-dimensional residene

frequeny is 10s−1
and the 1D di�usion oe�ient is 5.105bp2/s.

Figure 6. The average number of distint DNA sites visited by the enzyme

against the one-dimensional residene frequeny λ. The half�length of DNA is

100bp whih allows one to also read this number as a perentage.

Figure 7. The preferene of the protein for the target site 2 over the target site

1. The solid line represents the �tted solution whih gives

√
λ/D = 8.7.10−2bp−1

.

The two dashed lines orrespond to the limit ases when there is no sliding (straight

line, λ = ∞) and when there is only sliding (upper line, λ = 0). The other

parameters were drawn from experimental data (ℓ = 690bp).

Figure 8. The proessive ation of the restrition enzyme. Dashed lines

represent two �tted solutions of the model of Stanford (Stanford, et al., 2000) with

pure sliding. The two solid lines represent the solutions of our model for

√
λ/D =

8.7.10−2bp−1
and pinit = 0.5: one for πr = 0, and the other one whih passes near

experimental points for πr = 0.85.
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