
 1

 

 

Parametric Resonance May Explain Virologic Failure to HIV 

Treatment Interruptions 

 

Romulus Breban and Sally Blower* 

 

 

Department of Biomathematics and UCLA AIDS Institute, David Geffen School of Medicine, 

University of California, Los Angeles, California 90024 

 

 

 

 

 

Running head: Resonance in HIV Treatment Interruptions 

 

Keywords: structured treatment interruptions, HIV, resonance 

 

 

Manuscript information: Pages 12; Tables 1; Figures 2; Abstract words: 214; Text words 2,269. 

                                                 
* To whom correspondence should be addressed. E-mail: sblower@mednet.ucla.edu 



 2

 

Pilot studies of structured treatment interruptions (STI) in HIV therapy have shown that 

patients can maintain low viral loads whilst benefiting from reduced treatment toxicity.  

However, a recent STI clinical trial reported a high degree of virologic failure.  Here we 

present a novel hypothesis that could explain virologic failure to STI and provides new 

insights of great clinical relevance.  We analyze a classic mathematical model of HIV within-

host viral dynamics and find that nonlinear parametric resonance occurs when STI are added 

to the model; resonance is observed as virologic failure.  We use the model to simulate clinical 

trial data and to calculate patient-specific resonant spectra.  We gain two important insights.  

Firstly, within an STI trial, we determine that patients who begin with similar viral loads can 

be expected to show extremely different virologic responses as a result of resonance.  Thus, 

high heterogeneity of patient response within a STI clinical trial is to be expected.  Secondly 

and more importantly, we determine that virologic failure is not simply due to STI or patient 

characteristics; rather it is the result of a complex dynamic interaction between STI and 

patient viral dynamics.  Hence, our analyses demonstrate that no universal regimen with 

periodic interruptions will be effective for all patients.  On the basis of our results, we suggest 

that immunologic and virologic parameters should be used to design patient-specific STI 

regimens. 
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Introduction 

STI [1-6] are therapeutically prescribed interruptions of HIV continuous therapy.  There are three 

major advantages to STI.  First, STI decrease toxicities and side effects of HIV treatments [7, 8].  

Second, STI decrease the cost of HIV therapy, this being a particularly important consideration for 

resource-limited settings.  Third, STI may stimulate HIV specific immune responses 

(autoimmunization), thus patients may gain therapeutic benefits that are inaccessible through 

continuous therapy [5, 6, 9, 10].  Patients entering STI trials are typically selected on the basis of 

their viral load and CD4 count.  Interruption and resumption of therapy can be dictated by viral 

load and CD4 cell count [6, 11], can be periodically scheduled, or can have other protocols [12].  

Periodic interruption schedules including 5 days on/2 days off [13], one week on/one week off [7, 

8, 14], 3 weeks on/one week off [15], 8 weeks on/2 weeks off [16], 8 weeks on/4 weeks off [17], 30 

days on/30 days off [18], 6 months on/one month off [10] have been tried for various purposes and 

with various degrees of success.  The most intensively studied periodic STI is one week on/one 

week off, specifically designed for maintaining low viral load while decreasing toxicities and cost.  

The two pilot studies [7, 8] of this treatment schedule showed zero virologic failure.  However, the 

only large-scale clinical trial [14] of this treatment schedule was prematurely terminated due to a 

virologic failure rate of 53%.  Currently, the reason for this high rate of virologic failure is 

unknown; drug resistance does not appear to be the cause [14].  With the claim to have learned 

from the experience of one week on/one week off STI trials, a new STI pilot study of 5 days on/2 

days off awaits scaled-up investigations [13].  Here we present a new hypothesis that may explain 

virologic failure during regimens with periodic treatment interruptions.  We analyze a mathematical 

model to show that STI can interact with viral dynamics and cause (nonlinear) resonance; this 

interaction can be observed as virologic failure. 
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 Resonance is a general phenomenon that has long been recognized in physics and 

engineering [19-21].  Recently, resonance has been proposed as a mechanism in population biology 

to explain the seasonality of the influenza epidemics [22].  We hypothesize that resonance is to be 

expected at virologic level, as well.  Consider a system at equilibrium (e.g., viral set point) that has 

its own natural period.  In the presence of an external periodic perturbation (e.g., a periodic change 

in parameters), the system tends to follow the perturbation and displays oscillations in the dynamic 

variables.  The phenomenon of resonance represents the selectivity of the system to the external 

periodic perturbation.  If the period of the external perturbation is close to a critical value 

(determined by the natural period of the system), resonance will occur.  At resonance, the system 

responds strongly to the external perturbation and therefore the dynamic variables fluctuate widely, 

whilst when the system is far from resonance the fluctuations are much reduced.  Resonance is 

called parametric if the perturbation applied to the system is a periodic change in parameters.  

Resonance is also classified as linear and nonlinear.  In the case of small periodic perturbations 

(e.g., STI of ineffective treatment), we would expect linear parametric resonance (see supplemental 

material).  In the case of large periodic perturbations (e.g., STI of effective treatment), we would 

expect nonlinear parametric resonance. 

 The last decade of research in virology has demonstrated that mathematical models are 

extremely useful tools for understanding viral dynamics.  Simple within-host models [23-32] have 

been developed and successfully used to provide greater understanding of HIV, hepatitis C, and 

hepatitis B.  Treatment has been modeled by changing the effective values of the infection 

parameters.  However, the interaction between treatment and virus can also have dynamical 

aspects.  Simple models of viral dynamics have revealed that the viral set point (i.e., within-host 

endemic equilibrium) is reached through strongly damped oscillations [23, 25, 32].  In practice, 
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viral oscillations have not been observed.  This may be due to strong damping, coarse data 

sampling, or accuracy limitations of the measurements.  The damped oscillations around the viral 

set point have a well-defined period (i.e., duration of an oscillation cycle), and thus, a system is 

formed that is potentially subject to resonance.  A regimen with periodic treatment interruptions 

acts as an external perturbation.  If the STI period coincides with the critical resonance period of 

the viral dynamics, large fluctuations in the viral load will occur.  To investigate our resonance 

hypothesis, we analyzed a classic model of HIV within-host viral dynamics [23, 25, 27, 29] with 

added STI (see methods), and we simulated clinical trial data. Since resonance is a model-

independent phenomenon, analysis of a simple HIV model is adequate for obtaining general, 

qualitative results on how resonance manifests in viral dynamics. 

 

Results and Discussion 

We first used this model to simulate the virologic response of two patients [A (red) and B (blue)] 

participating in a theoretical STI clinical trial; Fig. 1(a).  The immunologic and virologic 

parameters used are given in Table 1.  Since current treatments to not cure HIV, we must choose 

the treatment parameters such that the reproduction ratio of the HIV infection under treatment is 

reduced but still larger than 1. The two patients A and B become infected with HIV at time t = 0, 

reach viral set points through strongly damped oscillations, and then enter the STI trial. Only the 

first and largest peak in the viral load may be observable and corresponds to the primary infection 

response.  Subsequent oscillations are heavily damped, additional peaks might be very hard to 

observe in practice as they are very close to the viral set point; see Fig. 1. Note that the viral loads 

of A and B appear indistinguishable at trial entry; thus, it may be expected that these two patients 

should respond very similarly to the STI.  Surprisingly, the viral load peaks of A under the STI 
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regimen are approximately twice as high as those of B. This occurs because although the set points 

of A and B are very similar, some of the parameters that determine the set point are very different 

(Table 1).  These parameters play a crucial role for the natural oscillation about the viral set point; 

hence, the STI resonates with the viral dynamics of A, but not with that of B.  Due to resonance 

selectivity, patients who appear indistinguishable at entry to a clinical trial can respond very 

differently.  In contrast, we find that patients A and C [see Table 1 and Fig. 1(b)], who have very 

different pre-STI set points, and hence would be expected to respond differently, actually respond 

similarly to the STI.  This is also a consequence of resonance selectivity; in this case the STI does 

not resonate with the within-host dynamics of C, and therefore C displays only small fluctuations in 

the viral load that are comparable to those of A.  We have shown that patient response to an STI 

regimen is heterogeneous and difficult to predict.  Blood tests measuring the viral load (and the 

CD4 count) before entering an STI regimen provide insufficient information to anticipate how well 

a patient will perform under the STI regimen. 

 To investigate the effect of the STI period (i.e., duration of an interruption cycle) on 

virologic failure, we simulated a second STI clinical trial. This provided the patients with the same 

number of days on treatment as the first STI, only with a different period; see Fig. 1(c).  The 

periodicity of the STI in Trial 1 resonated with the within-host dynamics of A but not with that of 

B. The periodicity of the STI in Trial 2 did not resonate with the within-host dynamics of either A 

or B.  Therefore, in Trial 2 (in contrast to Trial 1) the virologic responses of A and B were similar, 

as demonstrated by Fig. 1(c).  To understand possible virologic responses of A, B, C to a large 

range of periodicities of STI, we constructed patient-specific resonance spectra.  These spectra 

show the maximum (thin line), minimum (thick line), and average (dashed line) virologic response 

for each patient as a function of the STI periodicity; see Fig. 2.  It may be seen that the maximum 
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viral load varies significantly both with the STI periodicity and from patient to patient.  For 

example, patient C would fail (i.e., have high fluctuations in the viral load) an STI with short 

periodicity, whilst patient A would fail an STI with large periodicity.  Also, patients A and B, 

although having similar pre-treatment viral loads, display very different resonance profiles. 

 We hypothesize that the increased heterogeneity that has been observed in large STI clinical 

trials may be explained by recognizing that within-host viral dynamics of patients may resonate 

with the STI, and that patients may have a wide variety of resonance profiles.  The heterogeneity of 

immunologic and virologic parameters of patients is likely to increase with trial size; hence 

increased virologic failure rates are to be expected in large trials.  Only patients not having resonant 

interactions with the STI regimen would respond well, but this may be a relatively small fraction of 

the patients. 

 By using a classic mathematical model of within-host HIV dynamics we have shown that a 

nonlinear resonant interaction can occur between within-host viral dynamics and STI.  Our 

hypothesis provides a new understanding of virologic failure during STI. We have demonstrated 

that patients with similar pre-STI viral loads may or may not respond in the same way to STI, 

depending on the STI. We have also shown that patients with high pre-STI viral loads do not 

necessarily respond worse than those with low pre-STI viral loads.  The interaction between the 

within-host viral dynamics of a patient and STI is characterized by a resonance profile which may 

vary significantly from patient to patient.  Based on the idea of resonant interaction, great 

heterogeneity of patient response is likely to occur in large STI clinical trials. Thus, as a 

consequence of our results, no STI may be expected to be successful for a large number of patients.  

Hence, we suggest that STI regimens should be tailored to patient-specific immunologic and 

virologic parameters. 
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Methods 

We analyzed a classic mathematical model of the HIV infection that has been developed by others 

[23, 25, 27, 29], and has also been used for the study of hepatitis B [26, 31] and hepatitis C [24], in 

order to determine whether resonance occurs when STI are added to this model. For the HIV viral 

dynamics, this model gives results qualitatively similar to other models [32] which are also 

potentially subject to resonance. More sophisticated models containing CTL dynamics [30] can be 

studied on similar mathematical grounds. The model equations are 

,/
,/

,/

uvkydtdv
ayxvdtdy

xvdxdtdx

−=
−=
−−=

β
βλ

 

where x denotes the population of uninfected CD4 lymphocytes, y denotes the population of 

infected CD4 lymphocytes, and v denotes the virus population. The parameters of the system are as 

follows. λ is the birth rate of the CD4 lymphocytes. δ, a, and u are the death rates of the uninfected 

CD4 lymphocytes, infected CD4 lymphocytes, and virus, respectively. β is the infectiousness of the 

virus -- i.e., the fraction of the possible contacts between CD4 cells and virus that yield infected 

CD4 cells -- and k is the rate at which an infected cell produces new virus particles. The parameter 

values are taken from [32], and they are listed in Table 1.  

 We modeled the effect of treatment as a decrease by 30% in the virus infectiousness (i.e., β) 

and production rate (i.e., k) of the infection. Even under treatment, the parameters yield a basic 

reproduction ratio which is larger than 1; this reflects the real world fact that current treatment does 

not cure HIV. We did not include in the model the pharmacokinetics of the drug concentration in 

the blood and its influence on the infection parameters (see for example [32]) since this develops on 
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the time scale of 6 to 8 hours and interferes very little with the much slower viral dynamics on the 

time scale of weeks.  At the time scale of weeks, an average of the rapid fluctuations of the 

infection parameters influenced by the drug represents a good approximation of the exact variation 

driven by the pharmacokinetics. 

 Designing STI, we choose that the amount of time a patient stays on treatment is equal to 

the amount of time off treatment but this does not need to be so for a resonant interaction to occur.  

Modeling other periodic interruption regimens can be approached in a similar fashion.  We discuss 

drug naïve patients entering STI trials, but similar qualitative results are obtained for drug 

experienced patients, as well. 

 Our hypothesis of resonance can be tested in clinical studies of periodic treatment 

interruptions.  Given a group of HIV patients that have been carefully measured for their 

immunologic and virologic parameters (see e.g., [28]), an experiment can be designed in two basic 

ways.  First, selecting HIV patients with similar infection parameters, each of these patients is set 

on the same drug regimen but with different periodic interruptions.  Then, close monitoring of the 

viral load would enable for the computation of resonance profiles like those in Fig. 2. Second, 

selecting HIV patients with significantly different infection parameters, each of the patients is set 

on the same drug regimen with the same periodic interruptions.  Since the patients have different 

infection parameters, the STI may induce resonance in some but not all of the patients.  In this case, 

close monitoring of the viral load would reveal that large fluctuations in the viral load occur in 

selected patients with certain infection parameters, demonstrating resonance as in Figs. 1(a,b). Most 

importantly, such an experiment would certify that there exists no universal regimen with periodic 

interruptions applying to all patients. Rather, regimens with periodic interruptions must be tailored 

to specific immunologic and virologic parameters of the patient. 
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Figure 1 Simulations of viral loads of patients versus time. (a) Patients A (red) and B 

(blue), infected at time t=0, undergo no treatment for one year. The viral loads settle to 

viral set points through damped oscillations.  After that, the patients enter an STI regimen 

with 80 days on treatment and 80 days off treatment (160 day period). The shaded areas 

represent the intervals of time on treatment; (b) the same as (a) for patients A (red) and C 

(green); (c) the same as (a) but with 125 days on treatment and 125 days off treatment 

(250 day period). 

 

Figure 2 The simulated maximum (thin line), minimum (thick line), and average (dashed 

line) of the oscillations in the viral load versus the period of STI for (a) patient A, (b) patient 

B, and (c) patient C. The positions of the STI regimens in Fig. 1 are marked with dotted 

lines. The left dotted line corresponds to the STI regimen of Figs. 1(a,b), and the right 

dotted line corresponds to the STI regimen of Fig. 1(c). 
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Table 1. Parameter values.  Parameter estimates of the HIV model for patient A [32].  

Patient B has the same parameters as patient A with the exception of β which β = 8 × 10-

5/(cell/ml)/day.  Patient C has the same parameters as patient A except k which is k = 

200/day/ml.  We have obtained qualitatively similar results using other parameter sets 

provided in the literature [27].  The effect of treatment is modeled as a decrease by 30% in 

β and k. 

 

Parameter Biological Interpretation Unit Value 

   Patient A Patient B Patient C 

λ Immigration rate of CD4 

cells 

cells/day/ml 20  20 20 

d Uninfected CD4 cell 

death rate 

1/day/ml 0.02 0.02 0.02 

a Infected CD4 cell death 

rate 

1/day/ml 0.4 0.4 0.4 

u Free virion death rate 1/day/ml 4.0 4.0 4.0 

β Infectivity parameter 1/(cell/ml)/day 5 × 10-5 8 × 10-5 5 × 10-5 

k Virus production rate 1/day/ml 100 100 200 

 


