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Abstract 12 

We review the use of artificial neural networks, particularly the feedforward multilayer 13 

perceptron with back-propagation for training (MLP), in ecological modelling.  In MLP 14 

modeling, there are no assumptions about the underlying form of the data that must be met as 15 

in standard statistical techniques.  Instead the researchers should make clear the process of 16 

modelling, because this is what is most critical to how the model performs and how the results 17 

can be interpreted.  Overtraining on data or giving vague references to how it was avoided is 18 

the major problem. Various methods can be used to determine when to stop training in 19 

artificial neural networks: 1) early stopping based on cross-validation, 2) stopping after a 20 

analyst defined error is reached or after the error levels off, 3) use of a test data set.  We do not 21 

recommend the third method as the test data set is then not independent of model 22 

development. Many studies used the testing data to optimize the model and training.  23 
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Although this method may give the best model for that set of data it does not give 24 

generalizability or improve understanding of the study system.  The importance of an 25 

independent data set cannot be overemphasized as we found dramatic differences in model 26 

accuracy assessed with prediction accuracy on the training data set, as estimated with 27 

bootstrapping, and from use of an independent data set.  The comparison of the artificial 28 

neural network with a general linear model (GLM) as a standard procedure is recommended 29 

because a GLM may perform as well or better than the MLP.  If the MLP model does not 30 

predict better than a GLM, then there are no interactions or nonlinear terms that need to be 31 

modelled and it will save time to use the GLM.  MLP models should not be treated as black 32 

box models but instead techniques such as sensitivity analyses, input variable relevances, 33 

neural interpretation diagrams, randomization tests, and partial derivatives should be used to 34 

make the model more transparent, and further our ecological understanding which is an 35 

important goal of the modelling process.  Based on our experience we discuss how to build an 36 

MLP model and how to optimize the parameters and architecture.  The process should be 37 

explained explicitly to make the MLP models more readily accepted by the ecological 38 

research community at large, as well as to make it possible to replicate the research. 39 

 40 
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 44 

1. Introduction  45 

 46 



The earliest papers on the use of artificial neural networks in ecology began appearing 47 

in the mid 1990's.  Reported advantages of artificial neural networks over more traditional 48 

methods include: 1) form of relationships need not be specified  (no assumptions need to be 49 

made about the distribution of data); 2) nonlinear relationships or interactions among variables 50 

are easily modelled; 3) performance is usually better than general linear models; 4) complex 51 

data patterns can be handled because of their nonlinear nature; 5) ability to generalize to new 52 

data.  Thus, neural networks have many advantages for ecological studies where data rarely 53 

meet parametric statistical assumptions and where nonlinear relationships are prevalent.  54 

However, artificial neural networks also have disadvantages: 1) they are computationally 55 

intensive; 2) many parameters must be determined with few guidelines and no standard 56 

procedure to define the architecture; 3) analyst expertise is required; 4) no global method 57 

exists for determining when to stop training and thus overtraining is problematic; 5) sensitive 58 

to composition of the training data set; 6) sensitivity of training to initial network parameters; 59 

7) black box models.   60 

Perhaps because it is one of the easiest neural networks to understand, the feedforward 61 

multilayer perceptron with back-propagation for training, has been the most commonly used 62 

neural network in ecology.  More details on how this type of neural network works can be 63 

found elsewhere (i.e., Lek and Geugan, 1999 or in texts such as Anderson, 1995; Weiss and 64 

Kulikowski, 1991; Bishop, 1995; or Ripley, 1996).   65 

In this article we review the use of the MLP, or feedforward multilayer perceptron 66 

with back-propagation for training, in ecological modelling and how it is practiced.  Based on 67 

our experience we discuss how to build MLP models and how to optimize the parameters and 68 

architecture.  We make recommendations for best practices, which include the importance of 69 



avoiding overtraining, use of an independent test data set, and use of sensitivity analyses, 70 

neural interpretation diagrams, input variable relevances, and other methods to open up the 71 

black box model.  Although in this article we focus on the MLP, some of our 72 

recommendations are also relevant to other types of artificial neural networks.     73 

 74 

2. Literature review 75 

 76 

The MLP has been used in ecological studies by Brey et al. (1996) who predicted 77 

benthic invertebrate production/biomass ratios, Levine et al. (1996) who classified soil 78 

structure from soil sample data, Tan and Smeins (1996) who predicted changes in the 79 

dominant species of grassland communities based on climatic input variables, and Poff et al. 80 

(1996) who modelled streamflow response based on average daily precipitation and 81 

temperature inputs.  Paruelo and Tomasel (1997) predicted normalized difference vegetation 82 

index (NDVI) used in remote sensing. Phytoplankton production (Scardi, 1996; Scardi and 83 

Harding, 1999; Scardi, 2001) and phytoplankton occurrence and succession (Recknagel et al., 84 

1997; Karul et al., 2000) have been modelled with the MLP.  Fish abundance based on habitat 85 

variables (Baran et al., 1996; Lek et al., 1996), fish yield (Lae et al., 1999), and fish and 86 

microhabitat use (Reyjol et al., 2001) have also been modelled.  The MLP has been used to 87 

predict, based on habitat variables, presence or absence of macroinvertebrates (Hoang et al., 88 

2001), birds (Manel et al. 1999), golden eagle nest sites (Fielding, 1999b), interacting marsh 89 

breeding bird nests (Özesmi and Özesmi, 1999), and cyanobacteria (Maier et al., 1998).  Bird 90 

abundance (Lusk et al., 2001) and macro-invertebrate abundance and species richness (Lek-91 

Ang et al., 1999) has been modelled.  The MLP has been used to predict damage to 92 



agricultural fields by flamingo (Tourenq et al., 1999) and wild boar (Spitz and Lek, 1999).  It 93 

has also been used to predict lead concentrations in grasses (Dimopoulos et al., 1999). 94 

 95 

2.1 Criticisms of modelling with MLP 96 

 97 

From a literature review, we saw some problems with the reporting on the use of MLP.  98 

Sometimes the modelling process was not clearly described.  For example, some research did 99 

not report why certain variables were chosen for a final model.  Others did not tell how the 100 

parameters were set or how the architecture, the number of hidden units, was determined.  The 101 

number of samples used to train, validate and test the model was not always given.   102 

 103 

2.2 Overtraining 104 

 105 

However, the major problem was overtraining on data or giving vague references on 106 

how it was avoided.  An exception is Paruelo and Tomasel (1997), who provide a discussion 107 

of their experience with overtraining.  Unfortunately it seems that often studies do not make 108 

sufficient effort to avoid overtraining.  One of the biggest disadvantages of using MLP is that 109 

there is no perfect method for determining the number of training iterations.  There are 110 

basically three methods: 1) choose a user defined error level; 2) use an early stopping method 111 

such as autotrain (Goodman, 1996); or 3) use the test data.  The problem with the first method 112 

is that it is difficult to decide on what this error level should be.  Often this level is chosen 113 

when the error levels off and does not change.  The error usually drops until a certain number 114 

of iterations where it levels off and does not get much smaller; however at this point the 115 



network may be overtrained.  With early stopping methods, part of the training data is held out 116 

from the training and used to test the model performance.  The error goes down on the training 117 

data as the training proceeds.  The error also initially goes down on the holdout data but then 118 

the error level rises again as the model becomes overtrained.  While we prefer this method, it 119 

requires more data, which often is not available.  Another problem with this method is that it 120 

doesn't guarantee that the minimum error found is a global minimum rather than a local 121 

minimum.  If the test data set is used to determine when to stop training, this means that it is 122 

not an independent test of the model.   123 

 124 

2.3 Independent test data 125 

 126 

 Another problem we saw with the use of neural networks in ecological research was 127 

the lack of independent test data sets.  Two main approaches exist for evaluating (testing) 128 

model performance (Guisan and Zimmerman, 2000).  The first approach is to use a single data 129 

set to train and test the model using cross-validation, leave-one-out jack-knife, or 130 

bootstrapping.  These techniques are used most often when the available data set is small and 131 

all the data is needed to train the model.  The second approach is to use an independent data 132 

set for testing.  If the data set is divided into two parts with one part for a test, it is called a 133 

split sample approach.  However, the independent test is optimal if the two data sets originate 134 

from two different sampling strategies.   135 

Some studies used the test data to optimize the model and the amount of training (i.e. 136 

Levine et al., 1996 ; Karul et al., 2000; Tourenq et al., 1999; Reyjolet al. 2001).  Although this 137 



method may give the best model for that set of data it does not give generalizability or 138 

improve understanding of the study system.  139 

Studies with independent test data set(s) are rare (i.e. Recknagel et al., 1996; Poff et 140 

al., 1996; Paruelo and Tomasel, 1997; Özesmi and Özesmi, 1999).  Often the jackknifing 141 

(leave-one-out) of the data set is used (i.e. Lae et al., 1999; Manel et al., 1999; Spitz and Lek, 142 

1999) or cross validation (Levine et al., 1996; Lek et al., 1996; Baran et al., 1996; Paruelo and 143 

Tomasel, 1997; Manel et al., 1999).   144 

 Hirzel et al. (2001) even argue that one independent test is not sufficient but that more 145 

tests are needed.  However, independent test data is usually in short supply or non-existent in 146 

many ecological studies.  Therefore they generated a virtual species and used simulated data 147 

sets to compare their models.  Similar techniques may be possible in other ecological studies 148 

as well. 149 

 150 

2.4 Comparison with general linear models 151 

 152 

 Many studies have compared the MLP with general linear models (i.e. Baran et al., 153 

1996; Brey et al., 1996; Scardi, 1996; Paruelo and Tomasel, 1997; Fielding, 1999b; Karul et 154 

al., 1999; Lae et al., 1999; Manel et al., 1999; Özesmi and Özesmi, 1999).  Generally these 155 

studies have found that the MLP performs better than general linear models such as multiple 156 

linear or logistic regression (i.e. Brey et al., 1996; Baran et al., 1996; Paruelo and Tomasel, 157 

1997; Özesmi and Özesmi, 1999).  However the MLP does not always outperform linear 158 

techniques (Fielding, 1999b; Manel et al., 1999).   159 



 We recommend the comparison of the artificial neural network with a general linear 160 

model as a standard procedure because general linear models may perform as well or better 161 

than MLP.  If the MLP model does not predict better, then there are no interactions or 162 

nonlinear terms that need to be modelled and it will save time to use the general linear model.  163 

A quick method is to make a neural network without a hidden layer to create the general linear 164 

model.  If this model performs as well as the MLP with a hidden layer, then there is no need to 165 

use the MLP.  In addition, by connecting each input to only one hidden unit and then to the 166 

output unit a transformation-only neural network model can be made.  If the model 167 

performance of the MLP with a hidden layer is the same as a transformation-only model, then 168 

the variables can simply be transformed to remove nonlinearities in a general linear model 169 

(Goodman, 1995).    170 

 171 

2.5 Opening the black box 172 

 173 

 Finally, artificial neural network models should not be treated as black box models but 174 

by using various techniques the box can be opened (Scardi, 2001).  Available techniques such 175 

sensitivity analyses (Lek et  al., 1996; Scardi, 1996; Recknagel et al., 1997), input variable 176 

relevances and neural interpretation diagrams (Özesmi and Özesmi, 1999), randomization 177 

tests of significance (Olden 2000; Olden and Jackson, 2000), and partial derivatives 178 

(Dimopoulos et al., 1999; Reyjol et al., 2001) should be used to make the model more 179 

transparent.  Use of these techniques, which are described below, will further our ecological 180 

understanding, which is an important goal of the modelling process.  181 



In sensitivity analyses, the response of the model to each of the input variables is 182 

determined by applying a typical range of values to one variable at a time while holding the 183 

other variables constant (Lek et al., 1996).  The variables that are held constant are set an 184 

arbitrary level.  The level they are held at influences the results so they can be set at their 185 

minimum, first quartile, median or mean, third quartile, and maximum values successively.  186 

The resulting plots allow one to examine how the variables influence the model response.  187 

By examining the input variable relevances, we can see how much each input variable 188 

contributes to the model (Özesmi and Özesmi, 1999).  The relevance of an input variable is 189 

the sum square of weights for that input variable divided by the total sum square of weights 190 

for all input variables.  Variables with high relevances are more important in the model.     191 

Neural interpretation diagrams (NIDs) can be drawn to understand how the model is 192 

weighting different input variables and how the input variables interact to give the model 193 

response (Özesmi and Özesmi, 1999).  NIDs are drawn by scaling the thickness of the lines 194 

connecting the units according to the relative values of their weights.  Black lines represent 195 

positive signals and gray lines represent negative signals.  Thus in one diagram, we can look 196 

at the thickness of the connections coming out of the input units to see which variables are 197 

most important.  We can see how the input variables interact and their contribution to model 198 

output by looking at the hidden layer.  However neural interpretation diagrams are most 199 

helpful when the number of units and connections is limited.  Diagrams with 20 or more 200 

variables are too complicated to gain any insights.  For example, twelve variables are typical 201 

in analysis of cognitive maps (Buede and Ferrell, 1993).     202 

A randomization test has been developed to assess the statistical significance of 203 

connection weights and input variable relevances (Olden, 2000; Olden and Jackson, 2000).  In 204 



this approach the response variable is randomized, a neural network is constructed using the 205 

randomized data, and all the input-hidden-output connection weights (product of the input-206 

hidden and hidden-output weights) are recorded.  This procedure is repeated a large number of 207 

times to generate a null distribution for each input-hidden-output connection weight.  This 208 

value is then compared to the actual model value to calculate the significance level.  With this 209 

randomization test, the neural network can be pruned by eliminating connection weights that 210 

have little influence on the network output.  With the insignificant connection weights 211 

removed, it is easier to interpret how the model makes predictions with a NID.  In addition, 212 

the randomization test identifies the independent variables that significantly contribute to 213 

model prediction.   214 

 The partial derivatives of the network output with respect to input variables can be 215 

used to show the influence of the variables in the model (Dimopoulos et al., 1999; Reyjol et 216 

al., 2001).  By plotting the partial derivatives of the network output with respect to an input 217 

variable, how the network output changes with increasing values of the input variable can be 218 

seen.  Somewhat similar to relevances, the importance of the variables in the model can be 219 

determined by calculating the sensitivity of the MLP output for the data set with respect to 220 

each input variable.  The sensitivity is the summation of all the squared partial derivatives for 221 

each input variable.  By using techniques such as these, MLP models can be easier to interpret 222 

and help to improve our understanding of the study system.   223 

  224 

3. ANN modelling process  225 

 226 



Based on our experience we discuss how to build a MLP model and how to optimize the 227 

network parameters and architecture.  See Tan et al. (2002) for an example of our modeling 228 

process where we follow the guidelines and recommendations presented in this paper.  Our 229 

MLP modelling process generally proceeds as follows.  First it is necessary to determine the 230 

form of inputs and outputs for the data, the pre and post-processing of the data.  Usually the 231 

input variables are standardized so that they are all on the same order of magnitude.  We have 232 

found that standardizing the input variables, to means of zero and units of standard deviations, 233 

has consistently led to better results.  Then we determine the network parameters such as learn 234 

rate, weight range, etc.  Next we optimize the architecture, the number of hidden layers and 235 

number of hidden units in the hidden layers.  Then we optimize the parameters together with 236 

the chosen architecture.  We use techniques such as neural interpretation diagrams, input 237 

variable relevances, and sensitivity analyses to understand how our model is making 238 

predictions.  Finally we conduct an independent test of the model.  When our output is binary 239 

and depends on threshold we prefer ROC curves and c-index (which is an estimate of the area 240 

under the ROC curve) for assessing model accuracy.  See Fielding (1999a) for a discussion of 241 

different ways to assess model accuracy.   242 

 243 

3.1 Network parameters 244 

 245 

Learn rate and weight range are network parameters that influence the performance of 246 

the model by affecting the weights.  The learn rate and weight range can be set at default 247 

values and if the model is unstable made smaller until it stabilizes.  We have found that 248 

changing the weight range or the learn rate does not result in large changes in model accuracy.  249 



The changes in accuracy are in the same range as those that result from changing the random 250 

start, which initializes the weights.  Because of the variation in model performance caused by 251 

different initial weights, we run all network configurations at least five times using the same 252 

predetermined random seeds, produced by a random number generator.  Thus we optimize the 253 

network parameters and network architecture based on the average of the five random starts.      254 

 255 

3.2 Architecture optimization 256 

 257 

Next we optimize the architecture, the number of hidden layers and number of 258 

hidden units in the hidden layers.  Heuristics exist for determining the number of units in the 259 

hidden layer(s).  However, for each application it is basically a process of trial and error.  260 

We systematically run different models to optimize the network architecture.  First we create 261 

a general linear model (GLM), or a network with no hidden layer.  Second we create a 262 

transformation only model where each input is connected to only one hidden unit because if 263 

the transformation model performs as well as an ANN with a hidden layer then the input 264 

variables need only be transformed to remove nonlinearities.  Then we create models with 265 

one hidden layer having different numbers of hidden units.  For a well generalized ANN 266 

model, there should be about 10 times as many training data points as there are weights in 267 

the network (Bishop, 1995).  By using this heuristic, we can set an upper limit on the 268 

number of hidden units in the model.  We have found with our data that one hidden layer has 269 

been as accurate or more accurate than networks with 2 hidden layers (Figure 2).  The 270 

accuracy of the networks with hidden layers generally increases and then levels off after a 271 

certain number of hidden units.  When choosing the final architecture, the model with fewer 272 



hidden nodes should be chosen, because for two networks with similar errors on the training 273 

sets, the simpler one is likely to predict better on new cases (Bishop, 1995).  274 

 275 

3.3 Avoiding overtraining 276 

 277 

We have had good results with training a MLP and deciding when to stop training by 278 

using a holdout set (Özesmi and Özesmi, 1999).  However this technique requires more data, 279 

which is often in short supply in ecological studies.  More recently we have trained MLPs and 280 

decided when to stop training by determining when the accuracy leveled off using 281 

bootstrapping.  We used c-index, which is approximately the area under the Receiver 282 

Operating Characteristic (ROC) curve, to assess the accuracy.  A c-index of 1 indicates a 283 

perfect model and a c-index of 0.5 indicates a model that predicts no better than a random 284 

model.  We trained the same network to various numbers of epochs and calculated the c-index 285 

and corrected c-index with 150 bootstraps.  With each bootstrap the model is trained with 286 

approximately 66% of the data that is randomly selected from the total set. The model 287 

accuracy (c-index) is calculated using that subset of the data and the whole set.  The optimistic 288 

bias of each bootstrap is determined as the difference between these two accuracies.  The 289 

corrected c-index is then determined by subtracting the average optimistic bias for all of the 290 

bootstraps from the full model c-index.  When the corrected c-index levelled off we thought 291 

that this would be a well-generalized model.  For example, the number of epochs versus c-292 

index is shown in Figure 1.  While the c-index continues to increase as the number of epochs 293 

increases, the corrected c-index levels off at 70 epochs.  This is an indication of overtraining 294 

beyond 70 epochs.   295 



  296 

3.4 Independent test data set 297 

 298 

Although it has been stated before many times (i.e. Fielding, 1999a), we cannot 299 

overemphasize the importance of an independent testing set.  For example, in our work, the c-300 

index of a model based on the training data was 0.746 (Tan et al., 2002).  We used 150 301 

bootstraps to estimate how generalizable the model was and the corrected c-index as 302 

determined from these bootstraps was 0.663.  Finally we tested our model on an independent 303 

data set.  The c-index was 0.511 or about random.  Thus our training data indicated the model 304 

was explaining some of the variation in the data.  The bootstrapping indicated it was not quite 305 

as generalizable but the test data indicated our model was performing about the same as a 306 

random model.  Thus while very good results might be obtained with training data, and still 307 

good results might be indicated by bootstrapping (or some other data splitting technique such 308 

as jack-knifing), the real test is the independent data set.      309 

 310 

4. Conclusions 311 

 312 

We recommend that the following information be included in every published research 313 

using MLP.  These should be included to make the MLP modelling process more transparent 314 

and thus more readily accepted by the ecological research community at large, as well as to 315 

make it possible to replicate the research.  When using standard statistical techniques, the 316 

researchers must justify that their data meet the assumptions of those techniques.  However in 317 

the MLP modeling, there are no assumptions about the underlying form of the data that must 318 



be met.  Instead the researchers should make clear the process of modelling, because this is 319 

what is most critical to how the MLP model performs and how the results can be interpreted.  320 

A clear explanation of the modeling processing is necessary including which variables were 321 

chosen for the final model and why they were chosen.  A description of the form of the input 322 

and output variables is needed.  For example, input variables are usually standardized so that 323 

they are all in the same order of magnitude.  An explanation of how the network parameters 324 

(learn rate, weight range, momentum) were chosen, and the values that were used in the final 325 

model(s) should be stated.  How the network architecture was optimized should be included 326 

and the number of hidden layers and hidden units that were chosen for the final model(s).  The 327 

number of samples used to train, validate and test the model should be clearly indicated.  This 328 

information could be included in an appendix or in a table, but they should be part of every 329 

published research.   330 

We have found that one hidden layer is sufficient in our MLP models to achieve high 331 

accuracy on the training data and that two hidden layers does not increase this accuracy.  The 332 

accuracy level levels off after a certain number of hidden units.  However to avoid 333 

overtraining, the number of training epochs should be limited as well as the number of hidden 334 

units in the hidden layer.     335 

Based on the literature review of the use of MLP in ecological research and our own 336 

experience, we suggest that more effort be made to interpret the results of the neural network 337 

models using techniques such as input variable relevances, sensitivity analyses, neural 338 

interpretation diagrams, randomization tests, and partial derivatives.  We also recommend that 339 

independent test data sets be used for assessing model accuracy, as we found dramatic 340 



differences between model performance based on training data, bootstrapping, and use of an 341 

independent test data set.    342 

 343 
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Figure Captions 430 

 431 

Figure 1.   Average and standard deviation of c-index and corrected c-index versus the number 432 

of epochs the MLP model was trained.   433 

 434 

Figure 2.  MLP model accuracy on the training data versus the number of hidden units in one 435 

hidden layer (top curve) and two hidden layers (bottom curve).  436 
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