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The conditions of the chromosomes inside the nucleus in the Rabl configuration have
been modelled as self-avoiding polymer chains under restraining conditions. To ensure
that the chromosomes remain stretched out and lined up, we fixed their end points to
two opposing walls. The numbers of segments N , the distances d1 and d2 between the
fixpoints, and the wall-to-wall distance z (as measured in segment lengths) determine an
approximate value for the Kuhn segment length kl. We have simulated the movement of
the chromosomes using molecular dynamics to obtain the expected distance distribution
between the genetic loci in the absence of further attractive or repulsive forces. A com-
parison to biological experiments on Drosophila Melanogaster yields information on the
parameters for our model. With the correct parameters it is possible to draw conclusions
on the strength and range of the attraction that leads to pairing.
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1. Introduction

The process of gene silencing is a crucial building block for the picture geneticists

developed during the last decade about the functioning of genes within all kinds of

organisms. Gene silencing is a highly complex area of research, and several mecha-

nisms have been identified that inhibit gene expression within the nucleus.

The simplest molecular model to explain gene silencing postulates that specific

repressors regulate the onset of transcription, by binding directly to specific DNA

sequences and counteracting the action of activators and of the transcriptional ma-

chinery. A second possibility is that repressors, bound at specific sequences called
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silencing elements, might act by regulating the structure of the folded state of the

DNA, called chromatin. In the cell nucleus, DNA is wrapped around histones to

form the fundamental chromatin unit called nucleosome, and adjacent nucleosomes

are able to fold into a higher-order chromatin fiber. These structures reduce the

accessibility of DNA to the transcriptional machinery, and repressors might pre-

vent transcription by stabilizing the binding of histones to DNA, or the folding of

nucleosomes in compact higher-order chromatin structures.

Beside these levels of regulation, another level exists: namely the three-

dimensional organization of chromosomal domains in the cell nucleus during cellular

differentiation and development 1,2. In several cases, gene silencing has been cor-

related with relocation of chromosomal domains. In most of the published studies,

gene silencing correlated with gene positioning close to heterochromatic compart-

ments. Heterochromatin represents a highly compact region of chromatin where

genes are stably repressed.

Another case of gene silencing that shares common features with heterochro-

matin silencing involves the proteins of the Polycomb group (PcG) 3. PcG proteins

are highly conserved regulatory factors that are responsible for the maintenance

of the silent state of important developmental genes, such as homeotic genes. In

Drosophila melanogaster, PcG proteins form multimeric complexes and regulate

their genes through binding to chromosomal regulatory elements named PcG re-

sponse elements (PREs). This silencing involves repressive modifications on the

target chromatin. In addition, it has been observed that silencing via PcG pro-

teins and PREs is enhanced by the presence of multiple copies of PRE-containing

elements in the nucleus. These copies may, but do not have to be on the same chro-

mosome. Long-distance pairing between these two loci, which brings them closer

together than they would usually be, leads to strong repression of the genes they

control (Bantignies et al 3). This type of regulation represents silencing by geomet-

rical closeness, established in interphase nuclei (see Fig. 1).

In this report, we tried to model long-distance interactions among PREs, with

the long term goal to build predictive models for proximity and interactions of

chromosomal domains. Within the model, chromosomes were assigned a Rabl con-

figuration 4 in the nucleus, a situation which is present in Drosophila embryonic

nuclei. We calculated the expected distance distribution of the two loci in question

and compared this distribution to experimental results that were obtained previ-

ously.

2. The model

In our model the two arms of the chromosomes carrying the gene loci are represented

by two polymer chains. These chains are built up of ellipsoidal monomer segments

with a ratio of 1
20 between the half-axis (for a detailed description of the physical

model used see 5). The chains have to be non-ideal, because the chromosomes

cannot penetrate one another. Hence we have to demand that neither of the two
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Figure 1. Schematic representation of long-distance pairing between two loci X and Y in inter-
phase nuclei. Nuclei are represented in a Rabl configuration, in which centromeres are assembled
near the apical pole of the nucleus, whereas the telomeres point toward the basal pole. The wavy
lines represent the chromosomes projecting from centromeric heterochromatin toward the basal
pole of the nucleus. Colored dots represent independent loci that are distant in a normal situa-
tion (A) but can come in close proximity upon integration of PRE-containing elements (B). This
phenomenon leads to enhanced silencing and is dependent on PcG proteins.

monomers can occupy the same space at the same time. To ensure that our model is

comparable to a Rabl configuration, where the DNA is ”stretched” from the apical

pole of the cell nucleus to its bottom pole (see Fig. 1), we need a force acting on

polymers which hinders them from curling. The easiest way to do so is to fix the

chains between two walls. The distance between these walls should be large enough

to ensure the stretching, yet small enough to allow for movement of the chains. In

our model the ratio between chain length and wall-to-wall-distance ranges from 1.5

to 5. Both chains have the same length, with the end-points fixed in a plane. The

upper and lower end-points are symmetrical (see Fig. 2).

The distance between the fixed points on the first wall (d1) is kept small so they

are essentially at the same point compared to the chain length. In our simulations

we varied d1 between 1 and 1
4 monomer length.

For a free SAW some essential properties are well known (see e.g. 8). Denoting

the end-to-end distance by ~re, its mean by r̄e =<| ~re |> and its root mean square

by RE =
√

< (| ~re | −r̄e)2 >, then for long walks (number of steps N large), we

know that RE scales as:

RE(N) ≈ aNν (1)

ν is called the Flory parameter, initially calculated by Flory 9 to 3
5 , which is still

a very good approximation. When looking at the end-to-end distance distribution

function p(~re) for a free SAW, there are two different scaling laws, one for the region

where | ~re | is small and one for the region where it is large. For small values the

distribution follows a power law:

lim
re
RE

→0
p(~re) = constant×

(

re

RE

)

γ−1

ν

(2)
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Figure 2. Definition of the geometric simulation parameters. This sketch illustrates the meaning
of the simulation parameters given in table 1. The chain contour length is L = N × a.

whereas for large values a stretched exponential dampening factor dominates:

lim
re
RE

→∞

p(~re) = e
−( re

RE
)

1

1−ν

× f1

(

re

RE

)

, (3)

where f1 is some polynomial function. For the free case, γ is a universal param-

eter that depends solely on the dimensionality d. For d=3 we have γ ≈ 7
6 . The

distribution p(re) depends on re solely through the ratio re
RE

. Changes in the ge-

ometry of the chain environment (e.g. by the introduction of wedges or walls) lead

to changes in the value of the parameter γ, but leave the overall scaling predictions

unaffected 10. In our study we are simulating two stretched chains with fixed end-

points, which might be considered as a single one as long as the fixpoint distance

d1 is kept small. One of our goals is to determine the shape of the distance distri-

butions between arbitrary monomers under these highly restraining conditions.

Even if considering the distribution function of the distance ~ri,j between two ar-

bitrary steps i and j of a free SAW, the form of the distance distribution changes

from the end-to-end case. Though we might expect that a section of a free SAW

would behave also like a shorter free SAW itself, this is not the case. The loss of

entropy at the endpoints leads to a loss of the shape properties.

In our case, the chains are fixed between two walls and therefore a force is exerted

on them which restricts their ability of movement. Additionally, we have to expect

further changes in the properties of the chains due to loss of entropy as we fix the

position of the end point vectors of the walk precisely (the wall fixpoints), and

others have to stay in restricted areas (because both start and end points of the
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Number of Wall-to-wall Distance of Distance of App. number of

monomers distance fixpoints on fixpoints on configurations

in one chain N z [a] 1st wall d1 [a] 2nd wall d2 [a] obtained up to date

Parameter Set A

60 30 0.25 0.25 13,000

80 30 0.25 0.25 31,000

100 30 0.25 0.25 13,500

150 30 0.25 0.25 10,000

Parameter Set B

60 30 0.25 30 14,800

80 30 0.25 30 25,900

100 30 0.25 30 28,100

150 30 0.25 30 4,000

Parameter Set C

60 45 0.25 0.25 14,000

80 45 0.25 0.25 31,000

100 45 0.25 0.25 14,200

150 45 0.25 0.25 13,800

Parameter Set D

60 30 1 1 18,000

80 30 1 1 8,500

100 30 1 1 12,200

150 30 1 1 8,500

walk are fixed). This means we are sampling over a distinct subunit of the ensemble

of configurations of all free SAWs, which most probably has consequences on the

distributions pn1,n2
(rn1,n2

) of the distances between monomer n1 on chain 1 and

monomer n2 on chain 2. Determining the shape of these distance distributions has

been an important aspect of our simulations. We were able to verify by χ2-minimum

fits to ascertain that for most combinations of (n1,n2), pn1,n2
is Gaussian. However,

in those situations where the distribution had a small mean value, the shape clearly

deviated from the Gaussian form. In these cases our fits pointed towards a stretched

exponential for the upper end of the distribution, where the stretching exponent is

different from 1
1−ν

which was valid for the free end-to-end distance distributions (see

equation 2). This observation will have to be verified on simulations with improved

statistics.

3. Comparison with experiment

Our simulations will be compared with two different sets of experiments. In both

cases the two genetic loci in question were positioned on different chromosomes.
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This makes our model applicable as there is no direct connection between the chro-

mosomal arms we consider. If they were positioned on different arms of the same

chromosome, the centromer region might serve as a transmitter, any ”tugging mo-

tion” of one locus might be perceptible for the other one. Fixing both chains to

different fixpoints on the wall does not incorporate this feature. In both experi-

ments, copies of an element called Fab-7 (Fab-7 is an element containing a PRE

that regulates an homeotic gene of Drosophila melanogaster) have been inserted

into different loci X and Y:

Experiment I used Drosophila embryo cells, for which Fab-7 had been inserted at

locus X1 (“sd”) and Y1 (“BX-C”). These loci are situated approximately

at one third from the top of the nucleus according to F. Bantignies.

Experiment II used Drosophila embryo cells, for which Fab-7 had been inserted

at locus X2 (“sd”) and Y2 (“38F”). Locus X2 (“sd”) is still approximately

one third from the top of the nucleus, but locus Y2 (“38F”) is much closer

to it (≈ one sixth to one eighth) according to F. Bantignies.

To make the distance distributions obtained through the simulations comparable

to these experimental results, we have to scale the data. We may assume that

the fixpoints on the walls in our simulation correspond to (loose) binding of the

chromosomes to the membrane of the nucleus as outlined in Fig. 3. We neglected

the fix point distance at the top (d1) as it is quite small compared to z. As we know

the diameter D of the sphere, we can use it to find an approximate scaling relation.

In fact, this is the highest scaling factor we may assume that allows us to map the

simulation setup into the inside of the nucleus. If we were to consider the less likely

scenario where the ends of our chromosomes are not fixed to the cell membrane, but

to some other place within the nucleus, our scaling factor would have to be chosen

smaller, as the distance between the beginning and the end points of the chains,

which we hold fixed, will correspond to less than the diameter of the nucleus. Any

larger Kuhn segment length would place at least one of the fixpoints outside the

nucleus.

The length c in Fig. 3 is most suitable for the derivation. In units of D we have:

tanα =
d2

2z
c[D] = D cosα, (4)

whereas in our arbitrary length scale, whose units we shall call [a], we have:

c[a] =

√

z[a]2 +
d2[a]2

4
(5)

which, using D ≈ 5µm, leads to

1[a] ≈
D cos(tan−1(d2

2z ))

1
[a]

√

z[a]2 + d2[a]2

4

[µm]. (6)
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Figure 3. Determination of length scale. Here z is the wall-to-wall distance of our simulation
setup, d2 is the distance between the fixpoints on one wall (the distance d1 on the other wall has
been neglected as ≈ 0). The angle α as well as the distances a, b and c have been introduced
solely for the sake of calculating the conversion factor from arbitrary length scale to micrometer
and have no further meaning.

For the parameter sets A, C and D (see table 1), where d2 is much smaller than the

wall-to-wall distance z, we may approximate equation (6) so that 1[a] ≈ 5
z
[µm], in

case B we have to use the complete formula.

The value of the Kuhn segment length for chromosomes is not yet well known,

though most biologists agree that it is of the order of a few hundred nm (see

e.g. 11). When we rescale our data according to equation (6), we also determine the

resultant Kuhn segment and chain contour length (see table 2). The Kuhn segment

lengths are in the right order of magnitude. To have an immediate comparison to

the experimental histograms, we also performed a rebinning of our simulation data

into the same ranges Bantignies et al. used in their data processing.

We evaluated the distance distributions between point n1 on chain 1 and point

n2 on chain 2. In accordance with the position of the genes along their chromosomes,

for experiment I (sd and BX-C) we chose n1, n2 ∈ [0.3N ; 0.4N ] , where n = 0 would

correspond to the fixpoint on the top wall. For experiment II (sd and 38F) we de-

cided to consider ranges of n1 ∈ [0.1N ; 0.2N ] and n2 ∈ [0.3N ; 0.4N ]. An example

of the resulting graphs for parameter set D can be seen in Figs. 4 and 5. By visual

judgement of these graphs we compared the simulation data to the biological ex-

perimental data. When checking for possible agreement between the model and the

experiment, we realized that there is most probably the possibility of identifying the

distance distributions in the groups with two copies of the gene with distributions

from our simulation. We realized that congruence between the curves increased as

the number of segments per chain increased. We also found that a larger Kuhn seg-
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Number of segments Approximate chain Resultant effective Kuhn

per chain N length L [µm] segment length lk [nm]

Parameter Set A

60 10 170

80 13 170

100 17 170

150 25 170

Parameter Set B

60 8 130

80 11 130

100 13 130

150 20 130

Parameter Set C

60 6 110

80 9 110

100 11 110

150 16 110

Parameter Set D

60 10 170

80 13 170

100 17 170

150 25 170

ment length is favorable. In these comparisons we always neglected discrepancies in

the very first bin (smallest distances) as the biological model predicts a short-range

binding force keeping the genes together once they come within range. This force

has not yet been incorporated in the simulation model. On the other hand, the

graphs also give strong evidence that no parameter choice within our simple model

allows for identification between the control group distributions and the simulation,

because the full-width half-maximum (FWHM) of the experimental curves is large

although the mean value is relatively small. Parameter choices that could produce

a comparable FWHM in the simulation would always place the mean value of the

distribution at a much larger value.

4. Conclusions

The simple ”two chains, no interaction” (except self-avoidance) model employed in

the simulations is most likely adequate to account for the observed distance distri-

butions in the case of presence of two copies of Fab-7 (the ”pairing” case). We were

able to distinguish two trends: Those simulations that had the most segments were

best suited to ”reproduce” the experimental curve, as were setups with increasing
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Figure 4. Here we see the different distance distributions that involve the sd and the BX-C loci.
The four bars on the left hand side in each group represent different chain lengths of 60, 80, 100,
and 150 Kuhn segment lengths, respectively. In the case shown the Kuhn segment length was 170
nm. The next bar (turquoise) gives the experimental results when two copies of Fab-7 are present,
the black and grey bars stand for the control groups with only one copy.

Kuhn segment length. Using this information we have a good idea in which areas of

the parameter space further simulations should be conducted to enable a numerical

comparison between experimental and simulation data with the aim of determining

strength and range of the pairing/binding force between the two copies of Fab-7.

The failure of the model with regard to the control groups is rooted in its sim-

plicity. Possibly there is a repulsive force acting that is keeping different genes in

different compartments of the nucleus. The simulation data we already have to-

gether with further biological data from Bantignies et al. concerning the distances

not only between the two genetic loci, but also between other places along the

chromosomes in question should enable us to improve our model by introducing

adequate attractive and/or repulsive forces.

An open question concerns the shape of the distance distribution function in

different regimes. Whereas in some cases, χ2-minimum fits yield that the distri-
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Figure 5. In the above graphics we see the different distance distributions that involve the sd and
38F loci. The legend is identical to Fig. 4.

bution is clearly Gaussian, in others notable deviations were found, especially in

distributions with small mean distances. Though we found evidence that the upper

end of these might behave as a stretched exponential, further investigations with

improved statistics will have to be conducted to solidify this result.
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