
ar
X

iv
:q

-b
io

/0
51

10
12

v1
  [

q-
bi

o.
N

C
] 

 1
1 

N
ov

 2
00

5 Temporal correlation based learning in neuron

models

Jürgen Jost∗†

October 24, 2018

Abstract

We study a learning rule based upon the temporal correlation (weighted
by a learning kernel) between incoming spikes and the internal state of
the postsynaptic neuron, building upon previous studies of spike timing
dependent synaptic plasticity ([2, 3, 6]). Our learning rule for the synaptic
weight wij is

ẇij(t) = ǫ

∫ ∞

−∞

1

Tl

∫ t

t−Tl

∑
µ

δ(τ + s− tj,µ)u(τ )dτ Γ(s)ds

where the tj,µ are the arrival times of spikes from the presynaptic neu-
ron j and the function u(t) describes the state of the postsynaptic neu-
ron i. Thus, the spike-triggered average contained in the inner integral
is weighted by a kernel Γ(s), the learning window, positive for negative,
negative for positive values of the time diffence s between post- and presy-
naptic activity. An antisymmetry assumption for the learning window
enables us to derive analytical expressions for a general class of neuron
models and to study the changes in input-output relationships following
from synaptic weight changes. This is a genuinely non-linear effect ([16]).

1 Introduction

This paper deals with the question of incorporating correlation based learning
mechanisms in formal neuron models. According to the so-called Hebb rule,
such correlations are encoded by synaptic weights, and learning is considered
as a mechanism implementing this. More precisely, the decisive feature of the
mechanism of synaptic plasticity is its response to temporal correlations in the
input-output pattern of the postsynaptic neuron. The pattern of STDP, spike
timing dependent synaptic plasticity, emerged both from profound theoretical
investigations of Gerstner, Kempter, van Hemmen, Wagner, and others ([2, 3,
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4, 5, 6, 7]), inspired by discoveries about the processing of spatial information
in the auditory system of the barn owl, from detailed experimental studies
(see [8, 9, 10, 11]), and from carefully set up computer simulations ([16]). Put
simply, the result is that a synapse gets strengthened when a presynaptic input
arrives shorthly before the generation of a postsynaptic spike, and that it gets
weakened if the two events occur in reverse temporal order. This also solved one
of the problems for the implementation of Hebb’s rule in older network models
that followed a continuous dynamics, namely that one needed an additional
mechanism that was either ad hoc or non-local to prevent the synaptic strengths
from growing without bounds (see [17]).
The theoretical analysis, however, ultimately needed a neuron model that was
linear in the sense that the neuron’s activity, spiking probability, or spike rate
depended in a linear manner on the input received. The resulting learning rule,
while based on the correlation between in- and output, then did not in turn
affect that correlation. The computer simulations of Song et al.[16], however,
demonstrated that such learning based on temporal correlations in a non-linear
neuron model could sharpen those correlations and thus make the operation of
the neuron more efficient in this sense. It is the purpose of the present article to
provide a framework within which temporal correlation based learning and the
resulting changes in those correlation patterns can be analyzed for general non-
linear neuron models.1 For this, we shall need to make one crucial symmetry
assumption about the shape of the learning window which, while not in direct
qualitative contrast with the neurobiological findings, apparently is not strictly
quantitatively valid. If we take as our state function the firing rate of the
postsynaptic neuron (or some function of that firing rate), our model is a hybrid
between a timing and a rate dependent model. Still, as argued in [18], for
capturing the full wealth of experimental findings, probably models are needed
that include a more refined relationship between timings and rates. For those
reasons, our results can only be considered as a somewhat crude approximation
of the underlying neurobiological reality, but we hope that the elegance of the
theoretical principle will still provide us with useful insights. It remains the task
of deriving this principle from information theoretic considerations.

2 Temporal correlations and the learning rule

We consider the synaptic strength wij from a presynaptic neuron j to a post-
synaptic one i. i shall stay fixed over the entire course of our analysis, and so
the dependence on i could well be omitted from our symbols, but we find it
useful to include it nevertheless. By way of contrast, we shall need to compare
the effects of several presynaptic neurons, and so the index j is indispensable.
The learning rule then is a differential equation for wij as a function of time t,

1While we can treat non-linear neuron models, however, the learning rule employed is itself
linear in the sense that it assumes a linear dependence of the weight changes on some internal
state function; that state function could be the firing frequency, but it could also be some
non-linear function of it.
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depending on the temporal correlation between pre- and postsynaptic activities,
i.e., the ones of the neurons j and i.
The aim that the learning rule should depend on temporal correlations between
pre- and postsynaptic activity and the fact that the activity and the learning
dynamics take place on different time scales makes it necessary to specify the
relation between those time scales. Based upon [2, 3], it is carefully explained
in [6] that the time scale Tl on which the synaptic weight changes are analyzed
should separate the time scale of the neural spikes and the typical interspike in-
tervals from the one where the effects of learning become visible. More precisely,
both an “ergodic” and an “adiabatic” hypothesis is employed. The first one al-
lows to average over randomness, that is, over repeated trials, or, equivalently,
over the time course of a single, sufficiently long, trial whereas the second one
allows to average over time, that is, to work with quantities that can be assumed
to be constant on a time interval of length Tl. Here, we shall also employ the
latter, the adiabatic hypothesis, but use the former only in a somewhat weaker
form.
The presynaptic activity is given by the spike train

ρj(t) =
∑
µ

δ(t− tj,µ) (1)

produced by j. Here, the tj,µ are the firing times of neuron j in the time
period under consideration, and we use the standard δ-function formalism. For
the postsynaptic neuron i, instead of directly working with its spike train, we
employ a state function u(t). Since this is fundamental for our approach, we
should carefully discuss the underlying reasoning:

• While a presynaptic spike is an event that cannot be further analyzed
and has to be considered as externally caused, the activity and the firing
pattern of the postsynaptic neuron depend on the inputs received from
many other neurons, not only from the one forming the synapse under
consideration. Therefore, it is appropriate to work with some average for
the total input of the neuron and to consider its state as the dynamical
response averaged over the total input.

• In contrast to the presynaptic spike, a postsynaptic spike should not be
considered as an independent event. We rather need to employ a model
for the dynamic activity of the neuron in response to its input, i.e., we
need to suppose some deterministic relationship between input and output
– not necessarily between individual spikes, but for example between an
incoming spike and a postsynaptic spiking probability. The effect of a
single presynaptic spike may be very slight, but nevertheless it should
make some definite contribution to the state of the postsynaptic neuron.
That contribution may well depend on previous contributions from other
presynaptic neurons, and on the present postsynaptic state itself, and this
will then lead us to non-linear models.

We shall discuss various possibilities for the state function u below. At the
moment, we need not specify it any further. The next ingredient in our learning
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rule is the shape Γ(s) of the time window that describes how the time difference
s between pre- and postsynaptic activity influences the synaptic weight change.
It is generally agreed in the literature on STDP that both experimental evidence
(see [10] for a review) and conceptual reasoning ([2, 3, 6]) lead to the following
qualitative behavior:

1. Γ(s) = 0 whenever the absolute value of the time difference s between pre-
and postsynaptic spike is large.

2. Γ(s) > 0 whenever the presynaptic spike shortly precedes the postsynaptic
one, i.e., when s is negative and of small absolute value.2 This effect
has been called LTP (long term potentiation). This is interpreted as a
manifestation of causality, in the sense that the presynaptic spike can
then be considered as contributing to the postsynaptic one.

3. Γ(s) < 0 whenever the presynaptic spike occurs shortly after the postsy-
naptic one, i.e., when s is positive and of small absolute value. This effect
is called LTD (long term depression).

In addition, we shall need one further assumption on Γ(s):

4. Γ(s) is balanced in the sense that

∫
∞

−∞

Γ(s)ds = 0. (2)

This assumption will be needed subsequently to convert an integral of a
neuronal state function u against the time window function Γ into an in-
tegral of a differences of states against Γ restricted to positive arguments,
in other words for evaluating and weighting the effect that an input causes
on the state of the postsynaptic neuron. In our analysis below, we shall
mostly work with a state function that represents a firing probablity of
the postsynaptic neuron. In that situation, the function Γ can be inter-
preted as the neurophysiological learning window, and it then becomes
an issue whether that balancing condition is experimentally supported.
We shall summarize some of the findings in this direction shortly. Our
framework below, however, also allows us to consider state functions that
do not directly correspond to firing probabilities, but perhaps some other
internal quantities, or that subject such a firing probability to some non-
linear transformation. Under such more liberal conditions, the balancing
assumption employed here is still compatible with a non-zero integral of
the neurophysiological learning window.
While, returning to spike probabilities, this balancing assumption does not
seem too far from the neurophysiological findings, it is not strictly sup-
ported by them. At least, at present the available data seem to be mixed
on this issue (see the discussion and the references in [16]).

∫
∞

−∞
Γ(s)ds

2For an exception where there has been found an additional negative window for a certain
range of negative s, see [19].
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has not always been found to be strictly 0, but at least it seems to be
rather small in most situations. Recent experimental results that report
a non-zero integral are, for example, described in [12, 13, 14, 18]3, typ-
ically with a longer window and a slight dominance for LTD, whereas
those finding similar time frames for strenghtening and weakening report
approximate equality between the two effects or a slight dominance for
LTP [8, 15]. In any case, since the detailed electrochemical processes at
a synapse before and after reception of a spike are different, there cannot
be any direct biophysical reason for (2). At most, there may be a very
indirect reason for an approximate validity of (2). Namely, if that relation
should turn out to be most advantageous for the processing of information
in neuronal systems, it might be implemented by the forces of evolution.
This, however, may seem a little far-fetched in the present context, and
so, this assumption can be defended here only on the basis of its analytical
utility. The condition (2),

∫
∞

−∞
Γ(s) = 0, can, however, be also consid-

ered as a normalization that prevents the synaptic weights from growing
without bounds when subjected to Hebb type learning rules. As argued
in [16, 17], however, for that purpose a (small) negative value of that in-
tegral would be better, in order to weaken inputs that do not consistently
contribute to postsynaptic firing, but only by chance occur at about the
time of that firing. Uncorrelated pre- and postsynaptic activities would
then induce a weakening of the synapse. By way of contrast, under our
assumption, if we take as our state variable for the postsynaptic neuron
its firing rate, statistically independent pre- and postsynaptic spike trains
produce no weight change. However, since we may use a non-linear func-
tion of the firing rate, we still possess a certain flexibility here. The really
serious issue is that our symmetry assumption prevents us from making
a rate-dependent distinction between LTP and LTD. Such a distinction,
i.e., that at low rates, LTD dominates, whereas at higher rates, LTP does,
has been discussed in [18]. Also, these authors have found that a model
that includes rate, timing, and cooperativity captures some experimental
findings better than one that solely depends on the relative timing of pre-
and postsynaptic spikes. In their model, only nearest spike interactions
count, and LTP wins over LTD. In partial contrast to this, Froemke and
Dan[14] found that synaptic modification depends not only on the relative
timing of pre- and postsynaptic spikes, but also on the spiking patterns
within each neuron. In particular, the first spike within a burst is found
to be the dominant one.
As a consequence of our symmetry assumption (2), there exists a trans-
formation s⋆(s) of the positive reals onto themselves such that for s > 0,

3It is not clear to the present author, however, how accurate the estimates for the integral
are. For example, in [10], a negative integral is computed on the basis of fitting the data by
exponential functions, and the negative integral then results from a longer decay time of LTD.
That the data are described well by an exponential function, however, is not entirely obvious
to the present author, and fitting them with a different type of function might well lead to a
different value and sign for the integral.
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Γ(−s⋆(s))ds
⋆

ds
= −Γ(s), and consequently, for functions v (assuming nat-

ural integrability assumptions),

∫ 0

−∞

v(σ)Γ(σ) dσ =

∫
∞

0

v(−s⋆(s))(−Γ(s)) ds. (3)

(The formally simplest case is the one where Γ is an odd symmetric func-
tion, in the sense that Γ(−s) = −Γ(s) for all s; in that case, of course
s⋆(s) = s.) The point here is that in general the time courses realizing
LTD and LTP are different (see [20] for a recent survey of the molecular
mechanisms underlying these processes). By the symmetry assumption on
Γ the total, time-integrated effects of the two processes are of the same
magnitude, but stretched differently over time. The function s⋆(s) rescales
the latter process to make it symmetric to the former.

The idea for our learning rule is now quite simple: We convolve an input-
output correlation spike-triggered average with the learning window function Γ
to obtain a differential equation for the synaptic weight wij :

ẇij = ǫ

∫
∞

−∞

1

Tl

∫ t

t−Tl

∑
µ

δ(τ + s− tj,µ)u(τ)dτ Γ(s)ds (4)

where the sum extends over all spikes between t and t−Tl (and where we neglect
the discontinuities as a function of t when a spike happens to fall precisely on
one of these boundary points, because Tl is supposed to be much larger than
the typical interspike interval). The spike-triggered average occurring here, that
is, the inner integral, is known in the literature as stimulus-response correlation
or peri-stimulus time histogram. In other words, we stipulate that the synaptic
weight change is proportional to an input-output correlation weighted by the
kernel Γ. The proportionality factor ǫ is supposed to be small, to make learning
into a slow process that shows significant effects only on a time scale larger than
Tl, as in [2, 3, 6]. (4) is

= ǫ
1

Tl

∑
µ

∫ tj,µ−t+Tl

tj,µ−t

u(tj,µ − s) Γ(s)ds. (5)

Following [6], we may use the adiabatic hypothesis to extend the integration
boundaries for s to ±∞. Namely, when tj,µ = t−Tl+xTl for 0 < x < 1, s in the
integral varies between (x − 1)Tl and xTl, and for any given x and sufficiently
large Tl, the integration bounds can be taken as ±∞ because Γ(s) = 0 for
|s| >> 1. Thus, we may write

ẇij = ǫ

∫
∞

−∞

1

Tl

∑
µ

u(tj,µ − s) Γ(s)ds (6)

= ǫ
1

Tl

∑
µ

∫
∞

0

(u(tj,µ + s⋆(s)) − u(tj,µ − s))(−Γ(s))ds
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because of the symmetry assumption 4 above, and this receives a positive con-
tribution if u is larger after the incoming spike tj,µ than before

= ǫ
1

Tl

∑
µ

∫
∞

0

∫ s⋆(s)

−s

u̇(tj,µ + τ)dτ(−Γ(s))ds (7)

which receives a positive contribution if u is increasing between tj,µ − s and
tj,µ + s⋆.

3 Neuron models

In order to gain some preliminary understanding of the learning rule (4), we
briefly consider the case where the state function u is also given by a spike sum,
u(τ) =

∑
ν δ(τ − ti,ν). Inserting this into (4) yields

ẇij = ǫ

∫
∞

−∞

1

Tl

∫ t

t−Tl

∑
µ,ν

δ(τ + s− tj,µ)δ(τ − ti,ν)dτ Γ(s)ds

= ǫ

∫
∞

−∞

1

Tl

∑
µ,ν

δ(tj,µ − ti,ν − s) Γ(s)ds

= ǫ
1

Tl

∑
µ,ν

Γ(tj,µ − ti,ν). (8)

Thus, the learning rule changes the synaptic weight by a weighted sum of spike
time differences, as it should.
In order to gain deeper insights, however, we need to assume a systematic re-
lationship between input and output, and the approach taken here is that the
state of the output neuron i is described by a state function u whose value
then is determined by the inputs received. In the preceding example, we could
insert a functional relationship that determines the difference in spike times
tj,µ − ti,ν as a function of the synaptic input received, and thus, assuming the
presynaptic activity as given, of the synaptic weight wij . This will then lead
to a differential equation for the weight change in terms of that – and perhaps
other – synaptic weights. Depending on that functional relationship, the weights
in the model may then become unbounded or, which would be more pleasing,
converge to some stationary value. The mechanism for the latter is that an
increased weight might decrease the spike difference to 0 so that then there will
be no further increase since Γ(0) = 0. The analysis is rather straightforward and
therefore omitted. We point out, however, that a vanishing, or even negative,
integral of the learning kernel Γ does not automatically imply that the synaptic
weights stay bounded in such models. Namely, once a certain weight wij has
grown so large that any presynaptic input triggers a postsynaptic spike, then,
unless that spike occurs without any time delay simultaneously with the input,
the weight will keep growing, unless some input from a different synapse causes
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spikes shortly before the present input. Conversely, however, once our weight
is so large, it will then exert that negative effect on other synapses rather than
being dampened by those.
We now turn to a more systematic analysis of how assumptions about the func-
tional relationship between the input and the state u of our postsynaptic neuron
drive the weight changes in our setting. In fact, we can insert any neuron model
in (7) that is given either by an explicit expression for the state function u or in
the form of a differential equation for that state function. We start with the first
possibility and consider a model where the state of our neuron i is computed as

u = f(
∑
k

wik

∑
ν

κ(t− tk,ν)). (9)

Here, the tk,ν are the spike times of the incoming neurons k, and κ is a synaptic
transfer function. For causality, κ needs to satisfy the requirement that κ(τ) = 0
for τ ≤ 0, i.e., an incoming spike can only influence the state of neuron i after
it occurred. Reasonable choices for κ that have been discussed in the literature
are (see [1] for a general treatment):
1) A function that sets in sharply upon the arrival of a spike at time tj,µ and
then decays exponentially:

κ0(t− tj,µ) := exp(−
t− tj,µ

τ
)H(t− tj,µ), (10)

with the usual Heavyside function H . The derivative of this function is given
by

κ̇0(t− tj,µ) = δ(t− tj,µ)−
1

τ
exp(−

t− tj,µ

τ
)H(t− tj,µ). (11)

2) The so-called α-function that starts linearly upon arrival of a spike and again
decays exponentially:

κ1(t− tj,µ) :=
t− tj,µ

τ
exp(−

t− tj,µ

τ
)H(t− tj,µ). (12)

3) Both κ0 and κ1 have the disadavantage that they do not return to 0 in finite
time. This means that an incoming spike will have some effect forever, even
though this effect of course decays exponentially. For that reason, one might
prefer a decay to 0 in finite time, for example a linear one:

κ2 := 1−
t− tj,µ

τ
for 0 ≤

t− tj,µ

τ
≤ 1 (13)

and 0 otherwise.
The function f translates the synaptically weighted input sum into some acti-
vation of neuron i; it could stand for its firing rate, probability, or propensity.
In those cases, one would assume that it is monotonically increasing, i.e., has a
positive derivative.
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With this neuron model, (6) then becomes

ǫ

∫
∞

0

1

Tl

∑
µ (f(

∑
k

wik

∑
ν

κ(tj,µ − tk,ν − s)) (14)

− f(
∑
k

wik

∑
ν

κ(tj,µ − tk,ν + s⋆(s)))) Γ(s)ds.

Since Γ(s) < 0 for s > 0, the contribution to this expression at s > 0 is positive
if f(

∑
k wik

∑
ν κ(tj,µ − tk,ν + s⋆)) > f(

∑
k wik

∑
ν κ(tj,µ − tk,ν − s)), i.e., if

the state of i is larger after the spike at tj,µ than before. We recall that κ(σ)
vanishes for σ < 0, and that (for the choices κ0 or κ2, say) it is a decreasing
function of σ ≥ 0. Thus, if tj,µ − tk,ν + s⋆ ≥ 0 > tj,µ − tk,ν − s, i.e., if
tj,µ − s < tk,ν ≤ tj,µ + s⋆, we can expect a positive contribution, whereas if the
spike of k comes too early, tk,ν ≤ tj,µ − s, we obtain a negative contribution. In
other words, for a spike of neuron j to strengthen the synapse to neuron i, it
needs to be good at anticipating or “predicting” other incoming spikes that in
turn increase the state of i and thus its likelihood to fire. We thus confirm the
conclusion of the previous investigations [2, 3, 6, 1].
We now use one of the transfer functions κ0 or κ2 for κ; the modifications
required for the choice κ1 will be obvious. We obtain from (7)

ǫ

∫
∞

0

1

Tl

∫ s⋆

−s

∑
µ

df

dτ
(
∑
k

wik

∑
ν

κ(tj,µ − tk,ν − τ))

= ǫ

∫
∞

0

1

Tl

∫ s⋆

−s

∑
µ

f ′(
∑
k

wik

∑
ν

κ(tj,µ − tk,ν − τ)) (15)

∑
l

wil

∑
ρ

(−δ(tj,µ − tl,ρ − τ)− κ̇(tj,µ − tl,ρ − τ))dτ Γ(s)ds

(where in contrast to (11), the derivative κ̇ stands only for the smooth part)
which in turn equals

ǫ
∑
µ

1

Tl

∫
∞

0

∑
l

wil

∑
ρ

(f ′(
∑
k

wik

∑
ν

κ(tl,ρ − tk,ν)) (16)

+

∫ s⋆

−s

f ′(
∑
k

wik

∑
ν

κ(tj,µ − tk,ν − τ))κ̇(tj,µ − tl,ρ − τ)dτ) (−Γ(s))ds.

Note that we have shifted the minus sign to the Γ-term. The first term here
counts the number of spikes of j with appropriate weights. In the second one,
since κ is decreasing, κ̇ yields a negative factor.

We now turn to neuron models where the derivative of the state function u

is given in terms of the input and some inherent dynamic features. An example
is the leaky integrate-and-fire neuron that is described by

du(t)

dt
= −c1u(t) +

∑
k

wik

∑
ν

κ(t− tk,ν)− uth

∑
ti,λ

δ(t− ti,λ) (17)

9



for some constant c1 that determines the time scale of the decay.4 uth is the
value of the spiking threshold, and the ti,λ are the spiking times of our neuron
i. We may then insert (17) into (7) to obtain the learning rule for the leaky
integrate-and-fire neuron. The analysis can then proceed as for the above state
function f where we encountered the derivative of the transfer function κ0 or
κ2, except that the signs get reversed because an output spike gives a negative
instead of a positive contribution. The model is not entirely satisfactory because
the output spike time is not explicitly determined as a function of the input.
Also, the discontinuous resetting of u to 0 upon the emission of a spike cannot
directly be approximated by a smooth dynamics for the scalar variable u when
u is given as a solution of an ODE, since a solution of such an ODE can only
exhibit monotonic behavior when continuous. We can overcome this problem,
however, by introducing an internal state variable ϑ that takes its values in the
unit circle instead of the interval [0, uth] so that u = u(ϑ) is a 2-1 function. An
example of such a model is the ϑ-neuron introduced and studied by Ermentrout
and Gutkin [21, 22] (see also [1] for a general discussion). We can set things up
in such a manner that ϑ = 0 corresponds to the rest point u = 0 and ϑ = π

to the firing point u = uth of our neuron. The neuron model then consists in
expressing the time derivative u̇ of u = u(ϑ(t)) as a function of ϑ(t) and the
input I (=

∑
k wik

∑
ν κ(t− tk,ν), as always),

u̇ =
du

dϑ
ϑ̇ = Φ(ϑ(t), I(t)). (18)

We can then describe the generation and emission of a spike in a continuous
manner. What is essentially needed is that the derivative du

dϑ
is positive in the

upswing phase 0 < ϑ < π and negative in the downswing phase π < ϑ < 2π
(where, of course, 2π is periodically identified with 0). The precise shape of Φ
will, of course, depend on the biophysical model employed, but this is not our
present concern. Qualitatively, the generation and emission of a spike and the
subsequent resetting of a neuron then is described by a hump function v(t−ti,λ)
that can be made narrow, for example v(τ) > 0 precisely for |τ | ≤ δ0 for some

small δ0 > 0, with v(0) = uth. We then have the conservation
∫ δ0

−δ0
v̇(τ)dτ = 0.

Thus, a spike that occurs before the input at time tj,µ then leads to a negative
contribution in (7) for all s with ti,λ − tj,µ − δ0 < −s < ti,λ − tj,µ + δ0 and to a
vanishing one for other values of s.5 Conversely, if tj,µ < ti,λ, we get a positive
contribution for ti,λ − tj,µ − δ0 < s < ti,λ − tj,µ + δ0 and a vanishing one for
other s.

4Perhaps this example is not so good for the present setting, however, because in the
integrate-and-fire neuron model, u denotes a membrane voltage and cannot be interpreted as
a firing probability.

5Let us point out that s is an integration variable, and so, this does not require that input
and output spike appear virtually at the same time to have an effect. Rather, the function Γ
is only evaluated at a narrow range of its arguments s, the extreme case of course being the
one described in (8).
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For the subsequent analysis, a model of the qualitative form

u̇ = F (ϑ) +G(ϑ)
∑
k

wik

∑
ν

κ(t− tk,ν) (19)

is particularly useful. Here, F can stand for a leakage term that then is always
non-positive, whereas G(ϑ) should be positive before the spike (i.e., for 0 < ϑ <

π) and negative afterwards so that u can return to its rest value. A spike is
then built up when the r.h.s. of (19) is positive for a sufficiently long time. For
that model, (7) becomes

ẇij(t) = (20)

ǫ
∑
µ

∫
∞

0

1

Tl

∫ s⋆

−s

(F (ϑ(tj,µ + τ))

+G(ϑ(tj,µ + τ))
∑
k

wik

∑
ν

κ(tj,µ − tk,ν + τ)dτ) (−Γ(s))ds.

The first sum here again extends over all spikes that come in from neuron j with
t−Tl ≤ tj,µ ≤ t. It may then happen that the argument tj,µ + τ in the integral
is larger than t. This violates causality. However, as argued in Section 4 of
[6], those arguments are negligible because the learning window can be assumed
much smaller than Tl.
Let us assume for the moment for the sake of the discussion that the state
variable ϑ, being the result of many incoming spikes, varies so slowly that we
may replace ϑ(t + τ) by ϑ(t) for −s ≤ τ ≤ s⋆. Then, the contribution of the
spike at tj,ν is positive when it occurs for 0 < ϑ < π, since the integrand is
positive in that case, i.e., when the neuron i increases its state variable towards
the firing point, and negative in the interval corresponding to returning to rest
after firing. The first term again counts the incoming spikes of j, weighted with
the value of F (ϑ). Turning to the second term, and using the transfer function
κ0 or κ2, by the properties of κ again, that contribution for the spike of neuron
k at tk,ν is strongest in absolute value for tj,µ = tk,ν + s because it can then
exert its effect during the whole interval [−s, s⋆]. Thus, as a consequence of the
decay of κ after the initial pulse, it is best for the spike of neuron j to occur
shortly after the one of neuron k, provided this happens at a time when i is
responsive to incoming spikes. If κ = κ1 instead, then the optimal delay of the
spike of j after the one of k is even longer as the effect of the spike of k exhibits
itself most strongly only after some delay. Returning to κ0 or κ2, the effect of
the spike tk,ν is small, if it occurred too early since then its contribution during
the interval [tj,µ − s, tj,µ + s⋆] is weak, while it is also small if it comes too late
because then its influence starts too late. If κ decays to 0 very rapidly, then it
does not make that much of a difference anymore at which point in the interval
[tj,µ−s, tj,µ+s⋆] the spike of k occurs. In any case, because it is still somewhat
better for a spike of k to occur slightly before than after the one of j, we can-
not conclude in the present model that it is advantageous for j to anticipate or
predict the spikes of other incoming neurons, but rather to exploit the effects of
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those spikes and to bring i even closer to firing. In any case, a spike of j leads
to an increase of the weight wij when it occurs at a time when the state of i
increases from the resting to the firing value, and to a decrease otherwise.
These conclusions do not change significantly if we no longer replace ϑ(t + τ)
by ϑ(t) for −s ≤ τ ≤ s⋆. The term F (ϑ(tj,µ + τ)) is again straightforward
to analyze. In the second term, the quantity

∑
k wik

∑
ν κ(tj,µ − tk,ν + τ) is

now multiplied by the varying term G(ϑ(tj,µ + τ)) which we assume here pos-
itive when tj,µ + τ is smaller than the firing time ti, and negative afterwards.
When then the incoming spike at tj,µ occurs before the firing time, the term
κ(tj,µ − tk,ν + τ) then receives a positive factor as long as tk,ν < tj,µ + τ < ti,
and a negative one afterwards. If for example tj,µ = ti, then spikes of k at
tk,ν < tj,µ lead to a positive effect as long as τ < 0, and to a negative, albeit
smaller one, afterwards. Spikes at tk,ν > tj,µ have a negative effect for all τ , al-
though over a shorter span of time. While the precise contributions will depend
on the detailed shape of the learning window Γ, as well as on the actual spike
train tk,ν , the positive and negative effects should about balance each other for
tj,µ = ti, while if for example tj,µ > ti, this balance will be shifted towards the
negative ones.

4 Input-output relationships

In the preceding, we have investigated how the temporal relationships (correla-
tions weighted with a temporal kernel) between pre- and postsynaptic activity
drive the learning process as incorporated in synaptic weight changes. We now
address the question of how in turn these correlation patterns change as the
result of learning. In order to study this, we should separate the effects of the
learning dynamics from the ones of the activity dynamics. As learning leads to
changes in the dynamic behavior, we should assume that we start from a situa-
tion where without learning, i.e., when considering solely the activity dynamics
and assume that the synaptic weights are constant, the neuron responds to sta-
tionary input in a stationary manner. In other words, without learning, the
activity dynamics should always reach some state where the neuron responds to
the same input in the same manner. In particular, without learning, the rela-
tionship between input and output should be constant in time. This assumption
then allows us to study the effects of learning on this relationship. We proceed
to do so. The relationship between input and output determining the synaptic
weight change in our learning rule was computed or estimated in (6), (7) by

Cio(t) : =

∫
∞

−∞

1

Tl

∫ t

t−Tl

∑
µ

δ(τ + s− tj,µ)u(τ)dτ Γ(s)ds

=

∫
∞

−∞

1

Tl

∑
µ

u(tj,µ − s) Γ(s)ds
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=
∑
µ

∫
∞

0

1

Tl

∫ s⋆(s)

−s

u̇(tj,µ + τ)dτ(−Γ(s))ds, (21)

and we now wish to compute how this expression changes in time in response
to learning. We obtain

Cio(t)− Cio(t− h)

=
∑
µ

∫
∞

0

1

Tl

∫ s⋆

−s

(u̇(tj,µ + τ)− u̇(tj,µ − h+ τ))dτ(−Γ(s))ds

=
∑
µ

∫
∞

0

1

Tl

∫ s⋆

−s

∫ 0

−h

ü(tj,µ + τ + σ)dσdτ (−Γ(s))ds. (22)

Letting h tend to 0, we obtain

Ċio(t) =
∑
µ

∫
∞

0

1

Tl

∫ s⋆

−s

ü(tj,µ + τ)dτ (−Γ(s))ds. (23)

Without learning, by our stationarity hypothesis, this expression should vanish.
Looking for example at the second to last line in (22), without learning, the
integral over the derivative of u should be invariant under a time shift of the
argument, here by the amount h. This means that for the above integral over
ü, we only need to investigate how the integral over the derivative of u changes
by the learning dynamics when increasing the time by h. We study this for the
model (19),

u̇ = F (ϑ) +G(ϑ)
∑
k

wik

∑
ν

κ(t− tk,ν). (24)

In order to simplify our notation, we abbreviate
∑

k wik

∑
ν κ(t − tk,ν) as wκ;

thus w stands for the synaptic weight under consideration. When subjected to
a variation ẇ of w, (24) varies by

d

dw
u̇ ẇ = (F ′(ϑ)

dϑ

dw
+G′(ϑ)

dϑ

dw
wκ+G(ϑ)κ)ẇ (25)

(here, ′ denotes a derivative with respect to ϑ.)6 For the sake of the discussion,
we separate the indirect contribution coming from the variation of the state
variable ϑ in response to the change of the weight parameter w from the direct
effect of this weight change on u̇ as given by the last term in (25). The latter is

G(ϑ)
∑
k

ẇik(t)
∑
ν

κ(t− tk,ν). (26)

Inserting this into (22), we then obtain for the effect of this term on the weighted
input-output correlation

∑
µ

∫
∞

0

1

Tl

∫ s⋆

−s

G(ϑ(tj,µ + τ)) (27)

6Since we shall study effects on the time scale Tl which is independent of ǫ, the linearization
performed here constitutes a valid approximation for small enough ǫ.
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∑
k

ẇik(tj,µ + τ)
∑
ν

κ(tj,µ − tk,ν + τ)dτ (−Γ(s))ds.

From (20), we obtain a coarse estimate for this temporal change then as the
average sign of

(F (ϑ(t)) +G(ϑ(t))I(t)) G(ϑ(t)) (28)

where I(t) is an abbreviation for the input. Since the first factor must be positive
when a spike is being built up and the second factor must then also be positive so
that the input contributes towards the spike, their product then is also positive
during that phase. During the resetting phase, F and G are typically both
negative, and so, we obtain again a positive contribution to the change of the
weighted correlation. Thus, in this expression, a non-linear dependence of the
change of state of the neuron on the present value of that state itself leads to a
sharpening of the weighted input-output correlations through our spike timing
dependent learning rule.
These findings remain valid when we look at the precise formula in place of (28).
That formula results from inserting (20) into (27):

ǫ
∑
µ

∫
∞

0

1

Tl

∫ s⋆

−s

G(ϑ(tj,µ + τ)) (29)

∑
k

∫
∞

0

1

Tl

∫ s⋆
1

−s1

(F (ϑ(tk,λ + τ1))

+G(ϑ(tk,λ + τ1))
∑
l

wil

∑
ρ

κ(tk,λ − tl,ρ + τ1))dτ1 (−Γ(s1))ds1

∑
ν

κ(tj,µ − tk,ν + τ) dτ (−Γ(s))ds.

Here, the first sum extends over all spike times of neuron j with t−Tl ≤ tj,µ ≤ t,
whereas the second, inner, sum counts spikes of neuron k with tj,µ + τ − Tl ≤
tk,λ ≤ tj,µ + τ . So, the first G records the internal state of neuron i at the
time tj,µ + τ , and the sum over the spike times of k records the weighted input-
output correlation coming from k over the time period starting Tl earlier. Of
course, we may assume as an approximation that only the weights of selected
synapses change whereas the others remain stationary if we wish to analyze a
situation where only those specific synapses receive a new input pattern whereas
the weights of the others have settled in a stationary state in response to a sta-
tionary input pattern. In such a situation, the sum over k then extends only
over those neurons whose synapses undergo changes. In particular, we may con-
centrate on the effect of the synapse from neuron j. – The role of the κ terms
has already been discussed above.

It remains to treat the indirect effect coming from the variation of ϑ in
response to the variation of w. ϑ satisfies a differential equation of the form

ϑ̇ = Φ(ϑ) + Ψ(ϑ)wκ (30)
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(thus, comparing this with (19), we have u̇ = F (ϑ) + G(ϑ)wκ = du
dϑ

ϑ̇ =
du
dϑ

(Φ(ϑ) + Ψ(ϑ)wκ)). Differentiating (30) with respect to w, the variation

ω := dϑ
dw

satisfies
ω̇ = Φ′(ϑ)ω +Ψ′(ϑ)ωwκ+Ψ(ϑ)κ. (31)

Since we wish to understand the effect of learning during some time interval
[t− h, t], we assume that ω(t− h) = 0. We then obtain (for τ0 ≥ t− h)

ω(τ0) = e
∫ τ0
t−h

(Φ′(ϑ(τ))+Ψ′(ϑ(τ))w(τ)κ(τ))dτ (32)∫ τ0

t−h

Ψ(ϑ(τ))κ(τ)e−
∫

τ

t−h
(Φ′(ϑ(σ))+Ψ′(ϑ(σ))w(σ)κ(σ))dσdτ.

Thus from (25), the indirect effect is

(F ′(ϑ) +G′(ϑ)wκ)
dϑ

dw
ẇ, (33)

with dϑ
dw

= ω from (32). The more precise formula is, after letting h tend to 0,

ǫ
∑
µ

∫
∞

0

1

Tl

∫ s⋆

−s

(F ′(ϑ(tj,µ + τ)) (34)

+G′(ϑ(tj,µ + τ))
∑
m

wim

∑
ρ

κ(tj,µ + τ − tm,ρ))

ω(tj,µ + τ)
∑
k

ẇik(tj,µ + τ) dτ (−Γ(s))ds

with ω from (32) and ẇik from (20). Assuming Ψ(ϑ) to be positive, dϑ
dw

= ω can
be discussed in the same manner as the direct effect, but the factor in front of
it causes a somewhat different effect. Namely, while we may assume that G(ϑ)
is positive when u is rising, and negative when it is falling, the derivative G′(ϑ)
will then naturally be positive only during the initial phase of the rise of u, but
then turn negative to bring G(ϑ) back to 0 at the firing value. Thus, here we see
a positive effect in response to a weight change only during that initial phase,
but a negative one already before the neuron fires. The reason for this is of
course simply that the strengthening of the synapse will bring the neuron closer
to the firing threshold in response to the corresponding input, and thereby push
it into a state where it is less receptive to input, or, more precisely, where the
input has a comparatively smaller effect. It will depend on the neuron model
employed how close to the firing point that effect sets in. Likewise, F (ϑ) may
be negative over part or even all of the range of interest.
In any case, we can then insert (20) to evaluate the changes in the input-
output correlations explicitly, although the complete formula will get somewhat
complicated. Therefore, we have discussed here the qualitative effects instead.
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5 Discussion

We have introduced the learning rule

ẇij = ǫ

∫
∞

−∞

1

Tl

∫ t

t−Tl

∑
µ

δ(τ + s− tj,µ)u(τ)dτ Γ(s)ds (35)

where the tj,µ are the arrival times of spikes from the presynaptic neuron j

and the function u(t) describes the state of the postsynaptic neuron i. Γ(s) is
the learning window, positive for negative, negative for positive values of s of
sufficiently small absolute value, and satisfying the symmetry assumption

∫
∞

−∞

Γ(s)ds = 0. (36)

We employ that state function u instead of is spike train because in general
many presynaptic neurons contribute towards a spike of i and because an an-
alytical treatment needs to incorporate the underlying rule how the input and
the internal dynamics of a neuron generate its spike pattern whereas we can
treat presynaptic spikes as external events.
We could then study for general classes of neuron models how the relations
between incoming spikes and the internal state of i determined the synaptic
changes through our learning rule (35).
Moreover, we were able to derive an analytical expression for the converse effect,
namely the changes in the input-output relationship caused by those synaptic
weight changes. For that purpose, we needed a stationarity assumption that
without learning, that relation would have been static. This seems the only
reasonable way to isolate the effects of synaptic learning.
As in most theoretical studies on learning through synaptic weight changes in
neural networks, we have exclusively treated excitatory synapses although in-
hibiting synapses could also be handled within our framework.

Acknowledgement: I am grateful to the referee for his very detailed and
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