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Abstract

Integrating biological information from different sources to understand cellular pro-
cesses is an important problem in systems biology. We use data from mRNA expression
arrays and chemical kinetics to formulate a metabolic model relevant to K562 ery-
throleukemia cells. MAP kinase pathway activation alters the expression of metabolic
enzymes in K562 cells. Our array data show changes in expression of lactate dehydro-
genase (LDH) isoforms after treatment with phorbol 12-myristate 13-acetate (PMA),
which activates MAP kinase signaling. We model the change in lactate production
which occurs when the MAP kinase pathway is activated, using a non-equilibrium,
chemical-kinetic model of homolactic fermentation. In particular, we examine the role
of LDH isoforms, which catalyze the conversion of pyruvate to lactate. Changes in the
isoform ratio are not the primary determinant of the production of lactate. Rather,
the total concentration of LDH controls the lactate concentration.
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Introduction

Modeling of cellular metabolism has a long history of important contributions to
biology. Approaches include kinetic modeling, metabolic control analysis, flux bal-
ance analysis, and metabolic network analysis (Stephanopoulos et al., 1998). A new
era of research in metabolism is now possible, because large-scale expression studies
can determine levels of many metabolites (Goodacre et al., 2004; Fan et al., 2004) and
metabolic enzymes (Ferea et al., 1999; Kal et al., 1999). In this paper we use metabolic
enzyme expression data to guide metabolic modeling, with a focus on small but signifi-
cant changes in mRNA abundance. Our goal is to understand how biologically realistic
changes in mRNA abundance of metabolic enzymes affect cellular metabolism. Previ-
ous work integrating expression data with metabolic modeling has been done in yeast
(Akesson et al., 2004), but not, to our knowledge, in mammalian systems.

We focus on glycolysis, an essential ATP-producing metabolic pathway. The initial
reactions of glycolysis break down glucose into pyruvate. Pyruvate can feed into ei-
ther the citric acid cycle (aerobic metabolism) or homolactic fermentation (anaerobic
metabolism) (Voet & Voet, 2004). The reactions involving pyruvate therefore control
this important metabolic branch point. Homolactic fermentation is catalyzed by lactate
dehydrogenase (LDH) in a compulsory-order, ternary reaction (Borgmann et al., 1975).
LDH reversibly converts pyruvate and NADH into lactate and NAD+. The isozymes
of LDH are tetramers formed from two types of monomers (a third isoform is usually
germ-line specific, but can be expressed in cancers (Koslowski et al., 2002)). The two
isoforms are labeled H (heart) and M (muscle), and their ratio varies between cell
types. The LDH isoform ratio has been proposed to indicate the metabolic state of
cells: it is believed that the M isoform favors lactate production while the H isoform
favors pyruvate production (Boyer et al., 1963; Stambaugh & Post, 1966; Boyer, 1975;
Voet & Voet, 2004). In this framework, the LDH isoform ratio can serve as an indicator
of the relative flux through aerobic/anaerobic gycolytic pathways.

Here we use a mathematical model of homolactic fermentation to study the con-
nections between growth-factor signaling and metabolism. It has been known since the
work of Warburg that carcinogenesis is accompanied by changes in cellular metabolism
(Stubbs et al., 2003; Griffiths et al., 2002; Dang & Semenza, 1999). In particular, tu-
mors typically favor anaerobic metabolism, resulting in higher lactate production rela-
tive to non-cancerous cells (Walenta et al., 2004; Newell et al., 1993; Warburg, 1956).
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Although inhibition of glycolysis can kill tumor cells (Munoz-Pinedo et al., 2003), the
connections between carcinogenesis and metabolic alterations are not fully understood
(Fan et al., 2004). However, intriguing connections between metabolic enzymes and
cancer have been demonstrated (Kondoh et al., 2005; Kim et al., 2004; Mazurek & Eigenbrodt, 2003).
In particular, LDH expression is altered in many tumors (Walenta et al., 2004; Unwin et al., 2003;
Maekawa et al., 2003) and cancer cell models (Li et al., 2004; Karan et al., 2002; Lewis et al., 2000).
High tumor LDH levels have been shown to correlate with poor prognosis in lung cancer
patients (Koukourakis et al., 2003).

In this study, we focus on changes in LDH expression induced by the mitogen-
activated protein (MAP) kinase pathway. The MAP kinase cascade is important in
cell growth, differentiation, and survival, and alterations of MAP kinase signaling have
been found in many cancers (Lewis et al., 1998). The signal is transduced by a series
of phosphorylation reactions: MAP kinase proteins phosphorylate and thereby acti-
vate their downstream targets. The pathway includes the MAP kinase proteins ERK
1 and 2 and their upstream activators, the MAP kinase kinases MKK 1 and 2. Re-
cent work has found connections between MAP kinase signaling and metabolism. For
example, increased expression of LDH-H in human tumors may occur in part because
the transcription factor MYC, a downstream target of the MAP kinase pathway, tran-
scriptionally up-regulates the LDH-H gene (Jungmann et al., 1998; Shim et al., 1997).
Other genes involved in glycolysis are also affected by MYC (Osthus et al., 2000). Ac-
tivation of the MAP kinase pathway has been shown to increase LDH activity, glucose
uptake, and lactate production (Riera et al., 2003; Papas et al., 1999).

We studied mRNA expression in K562 erythroleukemia cells, a cell line used as
a model for leukemia. In our experiments, MAP kinase signaling was either (i) ac-
tivated with phorbol 12-myristate 13-acetate (PMA) or (ii) simultaneously activated
with PMA and inhibited with U0126, a specific MKK inhibitor. We found small but
reproducible changes in the expression of LDH isoforms in response to MAP kinase
pathway activation (figure 1), with no significant changes in other enzymes that cat-
alyze reactions involving pyruvate. This result suggests that activating the MAP kinase
pathway alters the relative flux through aerobic and anaerobic glycolysis in these cells.
We chose to model the expected changes in cellular lactate prodution to better under-
stand the connections between signaling and metabolism. We hypothesized that the
LDH isoform ratio plays an important role in determining cellular lactate levels, as
suggested previously (Riera et al., 2003; Dang & Semenza, 1999).

We formulated a chemical-kinetic model of homolactic fermentation based on in

vitro biochemistry (Borgmann et al., 1975). Our goal was to determine how changes
in the LDH isoform ratio alter the amount of lactate produced by K562 cells. We
used the experimentally determined abundance changes as model inputs. The model
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describes the mass-action kinetics of homolactic fermentation. We included metabolic
flux terms in the model to describe the connection between homolactic fermentation
and the larger metabolic network of the cell. The metabolic flux is a constant rate of
production/consumption of a metabolite through other reactions or transport. Several
model inputs—the steady-state concentrations of pyruvate, NADH, and NAD+—have
not been measured in K562 cells. Therefore we validated our results with a robustness
analysis (von Dassow et al., 2000; Barkai & Leibler, 1997).

We present several unexpected findings. In a preliminary analysis, we examined the
behavior of each isoform individually. Our results predict that LDH-H produces a larger
steady-state lactate concentration than an equivalent amount of LDH-M under typical
cellular conditions. This result is surprising because it disagrees with the statement,
often found in the literature, that the M isoform favors lactate production while the
H isoform favors pyruvate production (Boyer et al., 1963; Stambaugh & Post, 1966;
Boyer, 1975; Voet & Voet, 2004). We discuss the reason for this difference and explain
why our results are more applicable in vivo.

Second, we predict a decrease in the steady-state lactate concentration when the
LDH isoform abundance shifts from control to PMA-treated levels. This result means
that the H:M isoform ratio alone does not control the lactate concentration. After
PMA treatment the ratio of LDH-H to LDH-M changes from 1.02 to 1.35 in our ex-
periments. According to our single-isoform model, an increasing isoform ratio should
lead to an increase in lactate concentration. This finding led us to consider separately
how the isoform ratio and the total abundance of LDH control the lactate concen-
tration. We demonstrate that while the isoform ratio does affect the production of
lactate, the experimentally determined total LDH abundance change plays a larger
role in determining the lactate concentration.

Methods

Cell extraction and microarray analysis

K562 erythroleukemia cells were grown in suspension in 10% FBS/RPMI and
treated with 10 nM phorbol 12-myristate 13-acetate (PMA) and 20 µMU0126 (Promega)
as described previously (Sevinsky et al., 2004). Cells (7 x 105) were washed twice in
ice cold phosphate buffered saline, 1 mM EDTA, 1 mM EGTA, and total RNA was
isolated by TRIzol extraction (Invitrogen). First and second strand cDNA synthesis,
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in vitro transcription of biotin-labeled cRNA, and fragmentation were carried out fol-
lowing standard protocols from Affymetrix. Probes were hybridized onto U133 2.0 Plus
GeneChips (Affymetrix) and processed at the UCHSC Cancer Center Microarray core
facility. Datasets were corrected for background and normalized using RMA Express
software. Each condition was analyzed in three independent experiments (figure 1).

Model

We used a chemical-kinetic model to analyze the effect of isoform switching on the
non-equilibrium steady state of homolactic fermentation. We assume that the metabo-
lite and enzyme species are homogeneously distributed in the cytosol. This leads to a
set of 12 mass-action ordinary differential equations that describe the time evolution of
metabolite and enzyme concentrations. Four equations govern the metabolites and four
equations govern each of the LDH isoforms and their related complexes (equations 2-4).

Each elementary reaction in the model (figure 2) follows the law of mass action,
which results in the following reaction rates

v1 = k1x1e1 − k−1e2, (1a)

v2 = k2x2e2 − k−2e3, (1b)

v3 = k3e3 − k−3y1e4, (1c)

v4 = k4e4 − k−4y2e1, (1d)

v5 = k5x1f1 − k−5f2, (1e)

v6 = k6x2f2 − k−6f3, (1f)

v7 = k7f3 − k−7y1f4, (1g)

v8 = k8f4 − k−8y2f1, (1h)

where x1, x2, y1, and y2 are the concentrations of NAD+, lactate, pyruvate, and
NADH; e1, e2, e3, and e4 are the concentrations of LDH-H, LDH-H:NAD+, LDH-
H:NAD+:lactate, and LDH-H:NADH; f1, f2, f3, and f4 are the concentrations of LDH-
M, LDH-M:NAD+, LDH-M:NAD+:lactate, and LDH-M:NADH. The values of the
kinetic rate constants are shown in figure 3.

The equations describing the dynamics of the system can be written compactly in
terms of the reaction rates. The equations for the metabolites are

x′
1
= −v1 − v5 − α1, (2a)

x′
2
= −v2 − v6 − α2, (2b)

y′
1
= v3 + v7 + α3, (2c)

y′
2
= v4 + v8 + α4, (2d)
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where α1 and α2 are the flux of NAD+ and lactate out of the system, and α3 and α4

are the flux of NADH and pyruvate into the system.
LDH is an efficient catalyst which is thought to operate near equilibrium under

many conditions (Borgmann et al., 1975). However, the metabolites in homolactic fer-
mentation are continually consumed or produced in other reactions or transported into
and out of the cell. This flux of metabolites means that the system is not in ther-
modynamic equilibrium. In contrast to an equilibrium system, the steady state of a
non-equilibrium reaction depends on the reaction mechanism and the total concentra-
tion of the enzyme that catalyzes it. Here we do not specify a mechanism for this
metabolic flux but assume that each metabolite is produced or consumed at a constant
rate. The constant flux of each metabolite in the model is represented by the constant
terms α1, . . . , α4 in equation (2).

The heart-isoform complexes obey the equations

e′
1
= v4 − v1, (3a)

e′
2
= v1 − v2, (3b)

e′
3
= v2 − v3, (3c)

e′
4
= v3 − v4, (3d)

and the muscle-isoform complexes obey the equations

f ′
1
= v8 − v5, (4a)

f ′
2
= v5 − v6, (4b)

f ′
3
= v6 − v7, (4c)

f ′
4
= v7 − v8. (4d)

We are primarily interested in the steady-state behavior of the model, which occurs
only when the fluxes are equal for all four metabolites. In other words, a steady state
exists if and only if α1 = α2 = α3 = α4 = α, where α is the constant metabolic flux of
the model.

Numerics

A numerical approach was used to determine the steady-state relationship between
the metabolite concentrations, the metabolic flux, and the isoform concentrations with
both isoforms present (figure 4). Equations (2)–(4) can be integrated numerically,
allowing the system to approach a steady state from any initial condition. However,
we specified the steady-state concentrations of NAD+, NADH, and pyruvate, and
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determined the corresponding steady-state concentration of lactate (equations (2a),
(2c), and (2d) were eliminated from the model).

The differential equations were integrated using a Runge-Kutta-Fehlberg fifth-order
method with adaptive stepping (Press et al., 1992). Newton’s method was used to ac-
celerate convergence to the steady state. If the solution to the constrained differen-
tial equations was close to a steady state, Newton’s method quickly converged to it
(Press et al., 1992). If Newton’s method started too far from the steady state it rapidly
diverged. When this happened, the constrained equations were integrated again (con-
tinuing from the last solution) for a specified time interval. Integrating for a longer
time allowed the system to approach closer to the steady state before Newton’s method
was tried again. This hybrid approach worked well for all the conditions we studied.

We note that Newton’s method does not follow the dynamics of the system and
does not find the correct steady state unless the equations are additionally constrained.
In particular, it is necessary to explicitly enforce the conservation of the total enzyme
concentrations (see below).

Results

Single-isoform results

We examined the steady-state production of lactate by a single LDH isoform. Under
typical cellular conditions our model predicts that LDH-H produces more lactate than
LDH-M. This result is surprising because many authors state that LDH-M produces lac-
tate more efficiently than LDH-H (Boyer et al., 1963; Stambaugh & Post, 1966; Boyer, 1975;
Voet & Voet, 2004). We explain the reason for this difference, which results from dif-
ferent model assumptions, and argue that our analysis is more experimentally relevant.

Steady-state lactate production by a single isoform

Here we are interested in the behavior of the model at steady state. All concentra-
tions are assumed to be steady-state values unless otherwise stated. Suppose that the
concentrations of pyruvate, NAD+, and NADH are known. Furthermore, suppose only
one isoform of LDH is present and its total concentration is known. We can then derive
an equation that describes the concentration of lactate as a function of the metabolic
flux α. Recall that when α > 0 lactate and NAD+ are removed from the system and
pyruvate and NADH are added to the system.
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The total concentration of either enzyme isoform is constant. This can be shown
for LDH-H by adding equations (3a)–(3d),

e′
1
+ e′

2
+ e′

3
+ e′

4
= 0, (5)

and integrating to obtain
e1 + e2 + e3 + e4 = e0. (6)

Here e0 is the total concentration of the heart isoform. This relation always holds and
is not particular to the steady state. The same analysis applies to the muscle isoform:

f1 + f2 + f3 + f4 = f0, (7)

where f0 is the total concentration of the muscle isoform.
At steady state the rates of change of all variables are zero, so the derivatives in

equations (2a)–(2d) are zero. This implies that v1 = v2 = v3 = v4 = −α. There are five
unknown quantities in the model: the four reaction intermediates involving LDH-H, e1,
e2, e3, and e4, and the lactate concentration, x2. (The other metabolite concentrations
and the metabolic flux are assumed known). The five equations required for a unique
solution are provided by the heart isoform conservation law and the definitions of the
reaction rates:

e1 + e2 + e3 + e4 = e0, (8a)

k1x1e1 − k−1e2 = −α, (8b)

k2x2e2 − k−2e3 = −α, (8c)

k3e3 − k−3y1e4 = −α, (8d)

k4e4 − k−4y2e1 = −α. (8e)

Equations (8a), (8b), (8d), and (8e) form a linear system that determines e1, e2, e3,
and e4. The solutions for e2 and e3 can then be substituted into (8c) to determine x2.
The result is

x2 =
a0e0 − a1α

b0e0 + b1α
, (9)
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where

a0 = k−1k−2k−3k−4y1y2,

a1 = k−1k−2k4 + k−1k3k4 + k−2k1k4x1 + k1k3k4x1 + k−1k−2k−3y1

+k−2k−3k1x1y1 + k−1k−2k−4y2 + k−1k−4k3y2 + k−1k−3k−4y1y2

+k−2k−3k−4y1y2,

b0 = k1k2k3k4x1,

b1 = k2k3k4 + k1k2k3x1 + k1k2k4x1 + k−3k1k2x1y1 + k−4k2k3y2

+k−3k−4k2y1y2.

Note that when α = 0 we recover the equilibrium relationship

x1x2

y1y2
=

k−1k−2k−3k−4

k1k2k3k4
= Keq, (10)

where Keq is the equilibrium constant. In other words, when the metabolic flux is zero
the system approaches an equilibrium steady state, which is independent of the total
enzyme concentration.

The concentration of lactate is a function of the metabolic flux, α, as shown in fig-
ure 5. When the metabolic flux is positive (lactate is being removed from the system)
LDH-H produces a higher steady-state lactate concentration than an equal concentra-
tion of LDH-M. In our calculations we assumed concentrations of NADH, NAD+, and
pyruvate equal to 0.97 µM, 0.5 mM, and 99.4 µM respectively. However, this quali-
tative trend—higher steady-state lactate concentration produced by LDH-H—remains
unchanged as long as the pyruvate concentration lies between 40 µM and 2 mM.
Outside of this range the steady-state solution is infeasible (at steady state one or
more of the metabolites has a concentration less than zero) or LDH-M produces more
lactate than LDH-H. This interval was found by varying NADH and NAD+ indepen-
dently over a wide range of concentrations (0.1 µM– 10.0 mM). Previous measure-
ments of cellular pyruvate concentration have found a range 0.08 – 0.3 mM, although
the concentration of pyruvate has been found as high as 0.7 mM in skeletal muscle
under tetanic conditions (Stambaugh & Post, 1966; Boyer, 1975; Tilton et al., 1991;
Lambeth & Kushmerick, 2002). Therefore, we predict that in most cells LDH-H pro-
duces a higher steady-state lactate concentration than an equal amount of LDH-M.

Our result implies that LDH-H produces a greater concentration of lactate in the cell
then LDH-M does when the metabolic flux is positive. Previous work on the kinetics
of homolactic fermentation has arrived at the opposite conclusion. The difference
between our work and previous studies (Stambaugh & Post, 1966) is that we have

9



focused on the steady state of the reaction. Previous analyses have adopted a Michaelis-
Menten approach, examining the behavior of the reaction far from steady state and
under in vitro conditions. In Michaelis-Menten theory the only possible steady state
is the equilibrium state. Our model includes equilibrium as a special case when the
metabolic flux is zero (see figure 5). However, when the metabolic flux is nonzero the
concentrations of the enzymes and the reaction mechanism contribute to determining
the steady state. Thus at steady state LDH-H results in more lactate than LDH-M does
when the metabolic flux is positive. This relationship is reversed when the metabolic
flux is negative.

Predicted change in lactate concentration after MAP kinase activation

Here we predict how activating the MAP kinase pathway affects the steady-state
lactate concentration. Treating K562 cells with PMA activates the MAP kinase path-
way. Conversely, U0126 is a downstream inhibitor of MAP kinase signaling which acts
on MKK1 and MKK2 (Gross et al., 2000). The array data show changes in the ex-
pression of both LDH isoforms after activation of the MAP kinase pathway (figure 1).
We used the relative abundances from our array data to model three conditions: (i)
control (cells are untreated), (ii) MAP kinase active (PMA treatment), and (iii) MAP
kinase partially suppressed (PMA+U0126 treatment).

We used the full model (figure 2), with both isoforms present. The array data
determined the relative concentration of each LDH isoform. The concentrations of the
metabolites and enzymes in homolactic fermentation were not measured in K562 cells.
However, metabolite and enzyme concentrations are available for muscle cells and we
used these data as reference values in our model. K562 cells are unlikely to have an
identical metabolic state to muscle cells, so we performed a robustness analysis to de-
termine how our results depend on the reference concentrations used. Metabolite con-
centrations were sampled over two orders of magnitude about the reference values. We
verified that our results remain qualitatively unchanged over this range. We used a to-
tal LDH concentration of 3.43 µM (Mulquiney & Kuchel, 2003) in the control condition
and assumed that the mRNA expression data directly predict protein concentrations.
Therefore, in the control model the total concentrations of LDH-H and LDH-M were
1.98 µM and 1.45 µM. For the PMA-treatment condition, the total concentrations of
LDH-H and LDH-M were 1.83 µM and 0.90 µM, while for the PMA+U0126-treatment
condition, the total concentrations of LDH-H and LDH-M were 1.27 µM and 1.37 µM.
The steady-state concentration of lactate was determined numerically as described in
Methods, with the steady-state concentrations of NAD+, NADH, and pyruvate set
to 0.5 mM, 0.97 µM, and 99.4 µM, respectively, and a metabolic flux of 10.0 µMs−1

(Lambeth & Kushmerick, 2002).
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Our model predicts a decrease in lactate concentration for both the PMA and
PMA+U0126 conditions (figure 6). The expression data show that activating the
MAP kinase pathway with PMA down-regulates LDH-H and LDH-M (figure 1). As a
result of these changes, the model predicts a decrease in the cellular lactate level from
37.1 µM to 33.2 µM. Treatment with PMA+U0126 also down-regulates both LDH
isoforms (figure 1), leading to a predicted lactate concentration of 33.5 µM.

Robustness analysis

Here we demonstrate the robustness of the model predictions. The experimentally
observed changes in LDH-isoform mRNA predict a decrease in lactate concentration
after PMA or PMA+U0126 treatment, independent of the precise values of metabo-
lite concentrations used in the model. The values of NADH, NAD+, and pyruvate
concentrations can vary among different cell types and growth conditions. While the
quantitative predictions depend on the values of the metabolite concentrations, the
qualitative result is robust.

We used each metabolite reference value as the mean of a sampled distribution. We
chose a lognormal distribution to describe the population of metabolite concentrations
because samples vary by large fractional amounts (Boyer, 1975). The standard devia-
tion is one order of magnitude: approximately 68% of the samples are within 0.1–10.0
times the mean concentration. We note that the lognormal distribution is nonnegative,
guaranteeing nonnegative concentrations.

We examined 104 randomly sampled parameter sets (figure 4). For each set of
parameters, we calculated the lactate concentration under three conditions: control,
treatment with PMA, and treatment with PMA+U0126. Due to our broad sampling
of parameter space, we found some parameter sets where the model cannot reach a
physically valid steady state (some parameters result in a mathematical steady state
with negative lactate concentration). Thus we excluded from our analysis parameter
sets that resulted in an invalid steady state for any of the three conditions. This exclu-
sion did not significantly alter the lognormal distribution of parameter values (figure
7). We also checked the consistency of the simulations by comparing the distribution of
the first 1,000 results with the distribution of the following 9,000 results. There was no
statistically significant difference between these two distributions by the Kolmogorov-
Smirnov test (p < 0.01) (Press et al., 1992).

The median predicted lactate concentration from the randomly sampled parameters
(figure 8) follows the same trend observed for the reference parameter set (figure 6). The
predicted lactate concentration decreases by 16.9% for the PMA treament and by 14.8%
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for the PMA+U0126 treatment, relative to control. The systematic difference between
the three conditions can be seen by comparing sets of simulations corresponding to
the same parameter values. The difference histograms (figure 8) show the decrease in
lactate concentration from the control to the treated condition.

The predicted lactate levels for the PMA and PMA+U0126 conditions are similar.
This result was unexpected because the LDH H:M isoform ratios were different (1.35
for PMA and 0.85 for PMA+U0126). The key difference between the two treatments
and the control is the decrease in the total concentration of LDH, an observation that
led us to study the effects of isoform switching and abundance changes separately.

Isolating the effects of isoform switching and abundance change

We studied the effects of independently varying the isoform ratio and LDH abun-
dance using the robustness protocol described above (figure 4). First, we obtained
concentrations for pyruvate, NAD+, and NADH by sampling their distributions. The
histograms of sampled values are similar to those shown in figure 7 (data not shown).
For each sampled parameter set we performed three simulations: (i) control, where
the total concentration of LDH was 3.43 µM and the isoform ratio 1.02, (ii) increased
isoform ratio, where the isoform ratio was 1.35 and the total LDH concentration re-
mained 3.43 µM, and (iii) decreased total concentration, where the isoform ratio was
the control value (1.02) and the total concentration was 2.47 µM. These values were
taken from the mRNA expression data for control and PMA treatment. This analysis
allowed us to isolate the effects of changing the isoform ratio and the total concentration
of LDH. In each simulation, the steady-state concentration of lactate was determined
numerically as described in Methods.

Figure 9 summarizes the effect of increasing the isoform ratio or decreasing the total
concentration of LDH. When the isoform ratio is increased, the lactate concentration
increases, and when the total concentration is decreased, the lactate concentration
decreases. Increasing the isoform ratio increased the lactate concentration for every
parameter set sampled. Conversely, decreasing the total concentration consistently
decreases the lactate concentration. The effect of decreasing the total concentration is
greater than the effect of changing the isoform ratio, given the experimentally observed
abundance changes in the isoforms. For these experimental conditions, we predict that
the total abundance of LDH is more important than the isoform ratio in determining
the lactate concentration.

Discussion
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Our mRNA expression data show that activating MAP kinase signaling changes the
ratio of lactate dehydrogenase isoforms in K562 cells. We used a mathematical model
of lactate production by LDH to calculate the changes in steady-state lactate concen-
tration which result from changes in LDH concentration. We assume that changes
in gene expression predict changes in enzyme concentration. We predict that for the
experimentally observed changes in LDH, the cellular lactate concentration undergoes
a small but significant decrease. The robustness analysis demonstrates that our predic-
tion holds for a wide range of metabolite concentrations. Experiments which measure
the lactate concentration in K562 cells under different conditions (control and MAP
kinase signaling active) can directly test our prediction.

It is often stated in the literature that the two main LDH isoforms—LDH-H and
LDH-M—promote different directions of the homolactic fermentation reaction. The
idea that LDH-M favors the production of lactate and LDH-H favors the produc-
tion of pyruvate is sometimes used to explain experimental results (Baker et al., 1997;
Segal & Crawford, 1994). This interpretation of the role of the isoforms was based on
in vitro biochemistry under Michaelis-Menten conditions, which do not necessarily ap-
ply in vivo. Homolactic fermentation is influenced by external supply of and demand
for the reactants and products, which means the reaction is not isolated. In addition
to assuming an isolated reaction, Michaelis-Menten theory describes the behavior of
a reaction in its initial stages. However, metabolic reactions in the cell are typically
close to steady state.

In our analysis, we focus on the nonequilibrium steady state of the reaction in the
presence of a metabolic flux, which represents the production/consumption of NADH,
NAD+, lactate, and pyruvate by other sources in the cell. Under typical cellular
conditions, LDH-H produces a higher steady-state lactate concentration than does
LDH-M. We therefore state that LDH-H favors the production of lactate more than
LDH-M does. However, this does not imply that LDH-M favors the production of
pyruvate. Both isoforms favor the production of lactate when pyruvate is supplied
to the reaction (positive metabolic flux). If the metabolic flux is negative, LDH-M
produces more lactate than LDH-H.

We show that examining changes in the LDH isoform ratio alone leads to incorrect
predictions: changes in total abundance of the isoforms must also be considered. The
changes in LDH isoform ratio we observe lead to relatively small predicted changes in
the amount of lactate. The changes in total concentration of LDH lead to a larger
predicted change in lactate concentration. Taking into account total concentration
changes, as well as changes in isoform ratios, is essential for a full understanding of the
system.

An important problem in systems biology is the integration of information from
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disparate sources (Kitano, 2002). We describe an approach to metabolic modeling that
incorporates three important components: (i) the use of global profiling data to identify
an interesting problem and to guide the quantitative formulation of the model; (ii) a
kinetic model which describes the full dynamics of the system; and (iii) a robustness
analysis to support the conclusions. To our knowledge, no previous metabolic modeling
work has incorporated all of these elements. The testing of our approach on this small
problem is a pilot study for applying the method to larger systems, where the approach
can be even more valuable.

In recent years genome-scale profiling has become common. Significant hurdles
remain in the interpretation and use of these data: how can information from profiling
be integrated to advance our knowledge? In this paper, we began with an intriguing
connection found in the experiments: activating MAP kinase signaling changed the
expression of LDH isoforms. We predicted changes in cellular lactate metabolism based
on the data. The careful analysis of our profiling data allowed us to isolate interesting
and new effects. We emphasize that our model is based on experimentally observed
changes in LDH expression, so our results are experimentally relevant.

The advantage of using a kinetic model is that we can describe the full dynamics of
the system, including time-dependent behavior. Valuable information about dynam-
ics can arise from this approach; for example, the time scale required for the system
to reach steady state can be determined. However, use of kinetic models is more
complicated than other approaches that do not consider the full dynamics. The major
challenge in kinetic modeling is that many parameters are unknown. Therefore, robust-
ness analysis is essential. The robustness analysis demonstrates that our conclusions
do not apply only for a specific parameter set, but are true in general. This component
of our approach addresses the fundamental problem of unknown parameters in kinetic
modeling.

In the future we hope to apply this approach to larger systems. Testing the method
on a smaller system (such as the one described in this paper) is an important step in the
development of the method. However, we note that our results illustrate the power of
carefully analyzing small systems—surprising results can be obtained through studies
of this type.

Acknowledgements

This work was supported by NIGMS project number 1540281. MDB acknowledges
support from the Alfred P. Sloan foundation.

14



References

Akesson, M., Forster, J. & Nielsen, J. (2004). Integration of gene expression data into
genome-scale metabolic models. Metabolic Engineering, 6 (4), 285–293.

Baker, J. E., Curry, B. D., Olinger, G. N. & Gross, G. J. (1997). Increased tolerance
of the chronically hypoxic immature heart to ischemia. Circulation, 95, 1278 –
1285.

Barkai, N. & Leibler, S. (1997). Robustness in simple biochemical networks. Nature,

387 (6636), 913–917.

Borgmann, U., Laidler, K. J. & Moon, T. W. (1975). Kinetics and thermodynamics of
lactate dehydrogenase from beef heart, beef muscle, and flounder muscle. Canadian
Journal of Biochemistry, 53, 1196 – 1206.

Boyer, P. D., ed. (1975). The Enzymes, vol. 11,. 3rd edition, Academic Press.
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Figure 1: Changes in LDH-H and LDH-MmRNA expression after treatment with PMA
and PMA+U0126. PMA treatment activates the MAP kinase pathway, while U0126
is a downstream MAP kinase inhibitor. The data were obtained from experiments
performed on Affymetrix gene chips in triplicate (see text). Each data point is the
average of three measurements and the error bars represent the maximum and minimum
values. Treatment with PMA reduces the abundance of both LDH isoforms, and the M
isoform shows a larger reduction. Treatment with PMA+U0126 reduces the abundance
of both isoforms (relative to control), but the H isoform shows a larger reduction.
The expression levels of LDH-M are significantly different among all of the treatments
(p < 0.07). The expression levels of LDH-H for the PMA and PMA+U0126 treatments
are not significantly different from one another, but they are both significantly different
from the expression level of LDH-H in the control (p < 0.02).
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LDH-H + NAD
v1
−→ LDH-H:NAD

LDH-H:NAD + Lactate
v2
−→ LDH-H:NAD:Lactate

LDH-H:NAD:Lactate
v3
−→ LDH-H:NADH+ Pyruvate

LDH-H:NADH
v4
−→ LDH-H + NADH

LDH-M+ NAD
v5
−→ LDH-M:NAD

LDH-M:NAD + Lactate
v6
−→ LDH-M:NAD:Lactate

LDH-M:NAD:Lactate
v7
−→ LDH-M:NADH+ Pyruvate

LDH-M:NADH
v8
−→ LDH-M+ NADH

Figure 2: The elementary reactions of homolactic fermentation. Homolactic fermenta-
tion is a compulsory-order, ternary reaction. All elementary reactions are reversible.
The arrow in each elementary reaction indicates the direction of a positive reaction
rate.

k1 = 1.45× 106M−1s−1

k2 = 2.06× 105M−1s−1

k3 = 3.29× 104 s−1

k4 = 4.33× 102 s−1

k5 = 7.50× 105M−1s−1

k6 = 4.10× 104M−1s−1

k7 = 1.51× 104 s−1

k8 = 6.65× 102 s−1

k−1 = 1.88× 103 s−1

k−2 = 1.27× 103 s−1

k−3 = 5.29× 107M−1s−1

k−4 = 8.66× 107M−1s−1

k−5 = 3.75× 102 s−1

k−6 = 1.59× 103 s−1

k−7 = 9.52× 106M−1s−1

k−8 = 1.40× 108M−1s−1

Figure 3: Rate constants in the kinetic model (Borgmann et al., 1975).
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Basic Protocol

Sample NAD+ population

Sample pyruvate population

Sample NADH population

Specify equations

Run dynamics

Use Newton’s method

Found steady state?

Output steady−state value of lactate

no

yes

Randomized Protocol

Specify concentrations

Figure 4: Schematic of the computational protocol. The concentrations of pyruvate,
NAD+, and NADH are determined in one of two ways: either they are specified (basic
protocol) or they are randomly sampled (randomized protocol). The total concentra-
tions of LDH-H and LDH-M are determined from the experimental conditions with
both isoforms present. We determine the steady-state concentration of lactate using a
hybrid approach. The model will relax to steady state if integrated sufficiently long,
but Newton’s method accelerates the convergence to steady state.
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Figure 5: The predicted concentration of lactate as a function of the metabolic flux α.
In the model, a non-equilibrium steady state is possible when pyruvate and NADH are
added to the system at a constant rate α, and lactate and NAD+ are removed at the
same constant rate. These terms in the model represent the production of pyruvate
(and consumption of lactate) in other chemical reactions or transport into/out of the
cell. As the metabolic flux α is varied, the steady-state lactate concentration predicted
by the model changes. Note that α > 0 means that lactate is being removed from
the system. In each of the curves shown, only one of the LDH isoforms is present.
The concentrations of the metabolites and the total amount of each enzyme are held
constant (pyruvate, 99.4 µM; NAD+, 0.5 mM; NADH, 0.97 µM; LDH, 3.43 µM). The
sign of the metabolic flux determines which of the two isoforms favors the production
of lactate. This conclusion differs from previous analyses of this reaction, which were
performed under Michaelis-Menten conditions (see text). The experimental verification
of this prediction is future work.

23



Figure 6: Predicted concentration of lactate for three conditions which simulate control,
treatment with PMA, and treatment with PMA+U0126. The three conditions differ in
the activity of the MAP kinase pathway. PMA treatment (which activates MAP kinase
signaling) results in a small but significant decrease in predicted lactate concentration
of 10.5%. Treatment with PMA+U0126 slightly increases the lactate level relative
to the PMA treatment. The similar lactate levels for PMA and PMA+U0126 are
surprising, because the LDH H:M ratio is 1.35 for the PMA treatment and 0.85 for the
PMA+U0126 treatment. The concentrations of pyruvate, NAD+, and NADH are 99.4
µM, 0.5 mM, and 0.97 µM. The metabolic flux α is 10.0 µM s−1.
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Figure 7: Sampled metabolite concentration values. The distribution of each con-
centration is lognormal (see text). The mean of each distribution coincides with the
reference concentration of that metabolite, and the standard deviation is one order of
magnitude.
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Figure 8: Treating K562 cells with PMA or PMA+U0126 is predicted to result in a sim-
ilar concentration of lactate. (A) The median concentration of lactate under the three
conditions examined in the robustness analysis (control, PMA, and PMA+U0126).
This result is qualitatively similar to the result from the simulations using only the
reference concentrations of pyruvate, NAD+, and NADH (figure 6). Treatment with
PMA or PMA+U0126 decreases the concentration of lactate. (B) Histogram of the
predicted lactate concentration for the control simulation. This panel illustrates the
distribution of the lactate concentration found in the robustness analysis. The median
of this histogram is the value of the control treatment shown in A. (C) Histogram of the
difference between the lactate concentration predicted for the control and PMA treat-
ment conditions. All of the differences are positive, which means that PMA treatment is
predicted to decrease the steady-state lactate concentration. After PMA treatment, the
LDH isoform ratio increases from 1.02 to 1.35. (D) Histogram of the difference between
the lactate concentration predicted for the control and PMA+U0126 treatment con-
ditions. All of the differences are positive, which means that PMA+U0126 treatment
is predicted to decrease the steady-state lactate concentration. After PMA+U0126
treatment, the LDH isoform ratio decreases from 1.02 to 0.85.
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Figure 9: The contrasting effects of increasing the isoform ratio and decreasing the total
concentration of LDH. (A) The median concentration of lactate under the three con-
ditions examined (control, isoform-ratio increase, total LDH concentration decrease).
When the isoform ratio is increased and the total concentration of LDH is held con-
stant, the amount of lactate produced increases by a small amount. This trend is
consistent with the behavior of the individual isoforms: LDH-H produces more lac-
tate than LDH-M for α > 0. When the isoform ratio is held constant and the total
concentration of LDH is reduced, the amount of lactate produced decreases. (B) His-
togram of the predicted lactate concentration for the control simulation. This panel
illustrates the distribution of the lactate concentration found in the robustness analy-
sis. The median of this histogram is the value of the control treatment shown in A. (C)
Histogram of the difference between the lactate concentration predicted for the isoform-
ratio increase and control conditions. Every set of metabolites resulted in an increase
in the predicted lactate concentration. (D) Histogram of the difference between the
lactate concentration predicted for the total LDH concentration decrease and control
conditions. Every set of metabolites resulted in a decrease in the predicted lactate
concentration. Note that the magnitude of the change in the lactate concentration is
approximately 10 times larger than the effect of changing the isoform ratio (shown in
C). The influence of the total concentration of LDH on the production of lactate is
much greater than the influence of the isoform ratio.
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