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ABSTRACT 

On the basis of epidemiological studies, infection was suggested to play a role in the etiology 

of human cancer. While for some cancers such a role was indeed demonstrated, there is no 

direct biological support for the role of viral pathogens in the pathogenesis of childhood 

leukemia. Using a novel bioinformatic tool, that alternates between clustering and standard 

statistical methods of analysis, we performed a "double blind" search of published gene 

expression data of subjects with different childhood ALL subtypes, looking for unanticipated 

partitions of patients, induced by unexpected groups of genes with correlated expression. We 

discovered a group of about thirty genes, related to the interferon response pathway, whose 

expression levels divide the ALL samples into two subgroups; high in 50, low in 285 patients. 

Leukemic subclasses prevalent in early childhood (the age most susceptible to infection) are 

over-represented in the high expression subgroup. Similar partitions, induced by the same 

genes, were found also in breast and ovarian cancer but not in lung cancer, prostate cancer and 

lymphoma. About 40% of breast cancer samples expressed the "interferon- related" signature. 

It is of interested that several studies demonstrated MMTV-like sequences in about 40% of 

breast cancer samples. Our discovery of an unanticipated strong signature of an interferon 

induced pathway provides molecular support for a role for either inflammation or viral 

infection in the pathogenesis of childhood leukemia as well as breast and ovarian cancer.  
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INTRODUCTION 

Recent years have witnessed accelerated improvement of gene expression measurement 

techniques, and a rapid growth of their usage, in particular for studies of malignancies. These 

technological advances were not accompanied by a similar rate of improvement in analysis 

methods (Ross et al., 2003; Yeoh et al., 2002). The present publication has two distinct aims. 

First, we demonstrate that when novel methods of analysis are applied to data that have been 

previously published and studied, it is possible to discover important molecular pathways that 

have completely eluded previous studies (Armstrong et al., 2002; Golub et al., 1999; Ross et 

al., 2003; Yeoh et al., 2002), that employed  standard, commonly used methods  for analysis of 

gene expression data. Our second goal is to present the discovery of a robust signature of a 

group of interferon inducible genes (IIG) associated with childhood leukemia and with other 

cancers, and to discuss its intriguing biological and clinical implications.  

 

As has been discussed in several publications (Califano et al., 2000; Cheng & Church, 2000; 

Getz et al., 2000; Ihmels et al., 2002; Tanay et al., 2002), one of the main strengths of the 

modern gene expression technology also generates  a considerable difficulty in interpreting the 

results. The strength is the holistic view achieved by measuring the expression levels of a very 

large number of genes in a single experiment. Typically, however, the expression signatures of 

an overwhelming majority of these genes are not related directly to the biological process (e.g. 

cancer) one wishes to study; in fact, most of the measured genes give rise to a very noisy 

background, from which one tries to extract the relatively weak signal of correlated activity of 

a small but relevant group of genes. A straightforward way to zero in on a relevant subset of 

genes is by means of a supervised filtering step – for example, identification of genes whose 

expression differentiates two or more groups of samples known to be genetically or clinically 

different. However, such a step can never lead to the discovery of unexpected partitions 

induced by genes whose role has not been previously anticipated. An alternative is provided by 
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a family of methods (Califano et al., 2000; Cheng & Church, 2000; Getz et al., 2000; Ihmels et 

al., 2002; Tanay et al., 2002) that search for subgroups of genes and samples that satisfy certain 

conditions,, in an unsupervised manner. In particular, the Coupled Two-Way Clustering 

(CTWC, (Getz et al., 2000) clusters all genes as the first step, to identify correlated groups of 

genes; these gene-clusters are then used, one at a time, to probe and analyse the subjects. We 

use CTWC as our starting step, but deviate from this method in that the search is refined by a 

combination of more standard statistical tests (rather than continuing by unsupervised 

clustering), to zero in on an apparently interesting group of genes. Here we show that this 

mixture of supervised and unsupervised methodologies benefits from the advantages inherent 

to both methodologies and can lead to the discovery of biologically significant gene signatures.  

 

 The possible role of dysregulated immune or inflammatory response in the 

development of human cancer, and in particular its association with infectious agents, was 

suggested for many years. Several human lymphoid malignancies are associated with 

infectious agents: Burkitt’s lymphoma with Epstein-Barr virus (Henle & Henle, 1966), ATL 

with HTLV-I (Poiesz et al., 1980), body-cavity lymphoma with human herpes 8 (Mele et al., 

2003), B-cell non-Hodgkin Lymphoma with hepatitis C (Mele et al., 2003) and gastric MALT 

lymphoma with Helicobacter Pylori (Peek & Blaser, 2002).  

  It has long been suspected that common childhood infections contribute to the etiology 

of childhood leukemia, in particular ALL. The infectious etiology hypothesis has been 

proposed by two distinct but complementary theories. The Kinlen theory (Kinlen, 1995), based 

on transiently increased rates of leukemia in geographical clusters, suggests that population 

mobility and mixing result in infection occurring in susceptible, previously unexposed 

individuals. Several epidemiological studies supported the population mixing theory (Kinlen & 

Balkwill, 2001; Koushik et al., 2001). The alternative “delayed infection” hypothesis(Greaves, 

1988; Greaves, 1997; Greaves & Alexander, 1993) focuses on the timing of common 

 4



childhood infections and claims that some leukemia cases, mainly of the common B cell 

precursor subtype of ALL (cALL), are associated with a lack of exposure in infancy and a 

resultant failure of normal immune modulation. Dysregulated immune response upon delayed 

exposure to microbial infection is suggested to contribute to leukemogenesis. Studies in 

identical twins with leukemia (Ford et al., 1998; Wiemels et al., 1999), analysis of archived 

neonatal blood spots and screening of cord blood samples (Gale et al., 1997; Wiemels et al., 

1999) indicate that cALL is frequently initiated by chromosomal translocations and non-

disjunctions that occur prenatally, but requires a second “hit” to produce  leukemia. The 

dysregulated response to infection is suggested to provide, probably indirectly, proliferative or 

apoptotic stress to the bone marrow, leading to the additional decisive “hit”. The exposure is 

predicted to occur proximally to clinical disease, suggesting that a “smoking gun” can be 

identified when leukemia cell samples are studied. Despite intense research (MacKenzie et al., 

2001; MacKenzie et al., 1999), no direct biological  evidence, such as identification of 

microbial sequences, was found. Similarly, no epidemiologic data linking specific pathogens to 

ALL development were described. Several anecdotal reports described rare cases of ALL 

diagnosis preceded by a preleukemic phase known as pre-ALL in association with EBV or 

parvo B19 infection (Hasle et al., 1995; Tabori et al., 2001). 

 We describe here the identification of a gene expression signature in a subset of the 

patients suggestive of a deregulated immune response to some pathogen. We show that this 

signature occurs with highest frequency (one third) in the hyperdiploid ALL cases and as a 

smaller fraction in the other childhood leukemia subtypes. The finding of this gene expression 

profile in childhood leukemia, in particular in those cases that are overrepresented in the early 

childhood cALL peak, supports the role of an infectious agent, most probably a virus, in the 

pathogenesis of leukemia.  
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We looked for the same gene expression signature in a variety of data-sets of other human 

cancers. While in the majority of cancer samples no significant overexpression of the IIG was 

observed, it was detected in 40% of breast cancer and 20% of ovarian cancer samples. Indeed, 

some epidemiological studies have previously suggested a role for infection in the 

pathogenesis of ovarian (Ness et al., 2003) and breast (Ford et al., 2003) tumors. Additionally, 

molecular studies identified mouse mammary tumor virus-like sequences in about 40% of 

breast cancer samples (Ford et al., 2003; Wang et al., 1995). The "interferon signature" may 

reflect the activation of this pathway in the transformed cells themselves. Alternatively, it can 

reflect the response of the cancer cells to non-malignant cells of the immune system. 
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RESULTS 
 
Analyzing the data of Yeoh et al (Yeoh et al., 2002).  

Our aim was class discovery: to identify new partitions of the samples, into sub-groups with no 

previously known common label, on the basis of the expression profiles of a group of genes 

with correlated expression levels. To this end we used the CTWC method (see methods 

section).  The expression levels of 3000 probe-sets that passed a variance filter were used in 

this analysis. We applied the algorithm on each of the ALL subtypes separately, in order to 

avoid 'inter-subtype' noise. ALL subtypes with large numbers of samples were the first to be 

analyzed. When we applied the algorithm on TEL-AML1, a group of 16 probe-sets representing 

15 genes (Table 1) separated the TEL-AML1 subtype very clearly into two sub-groups (Figure 

a): in 8 TEL-AML1 samples these probe-sets had high expression levels whereas in the 

remaining 71 samples their expression level was relatively low. The distinct group of 8 

samples shared no clinical label (such as same protocol of treatment or same prognosis). 

Strikingly, the majority (12 of 15) of the differentiating genes were interferon inducible genes 

(IIG). This constitutes step (i) of our analysis.   

 Next, in step (ii), we refined the list of these genes, using supervised analysis.  We took 

the separation into the two groups of 8 versus 71 samples as "ground truth" and searched for 

genes that differentiate between these two groups. This search was performed on an extended 

set of 6500 genes. 184 probe-sets passed the TNoM as differentiating, with p-values below 

0.05. To overcome the problem of multiple comparisons we applied the FDR method; 23 

probe-sets, representing 19 genes, were identified as separating at an FDR level of 5%. The 

practical meaning of this statement is that out of these 23 probe-sets we expect about one to be 

a false positive, present due to random fluctuations. 
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The next step, (iii), of our iterative refinement process was again unsupervised; we used the 

expression levels of the 23 probe-sets found in step (ii), to characterize all samples, and 

clustered them using SPC. This way we identified a group of 50 samples, selected from all the 

ALL subtypes; these 50 have high expression levels of the 23 probe-sets (Figure 2). This group 

of samples consists mainly of hyperdiploid>50 but contains almost all other subtypes as well 

(Table 2). The hyperdiploid>50 subtype was significantly over-represented among the 50 

samples with high expression; no other clinical label, specific to these samples, was found. 

Finally, to complete the refinement process, supervised analysis was performed again in step 

(iv), using TNoM on 6500 probe-sets, revealing 28 genes that most significantly separate the 

new sub-group of 50 samples from the remaining 285 samples (see Table 1).  

 

Each of the four steps yielded its own list of separating probesets (genes). Although not 

identical, these gene lists have significant overlaps, which can also be inferred from Table 1. 

Out of the total 30 of known genes (whose symbols are given in the Table), 17 are known to be 

induced by interferon; most of these have never been associated with leukemia. 

  

Analysis of other datasets (Armstrong et al., 2002; Bhattacharjee et al., 2001; Golub et al., 

1999; Ramaswamy et al., 2001; Rozovskaia et al., 2003; Shipp et al., 2002; Singh et al., 2002; 

Staunton et al., 2001; van 't Veer et al., 2002; Welsh et al., 2001; Welsh et al., 2001).  

 

We now turned to search for other types of cancer in which a similar finding may hold; we 

tested whether we can find a sub-division of samples in other datasets on the basis of the 

expression levels of genes from the same pathway. However, in each of the following datasets 

we had to use a different subgroup of the separating genes, since some genes did not appear in 

these datasets and others had too many missing values. We ran the SPC algorithm for each 

dataset, using the appropriate subgroups of our gene list. Our aim was to find a distinct group 
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of samples, in which these genes were overexpressed. In addition, we checked the sample 

labels in order to find common clinical indicators, shared by the members of the selected 

subgroup.    

 We applied the same method of analysis to the more recent leukemia data of the same 

group (Ross et al., 2003; Yeoh et al., 2002), where the Affymetrix HG-U133 microarrays, 

containing 45,000 probesets representing 33,000 genes, was used on a much smaller number of 

samples, 132 representative cases. Although the genes and their representation on these 

microarrays are different; we did find a subset of the IIG (14 genes) that appears on both chips 

and clearly identifies a small subgroup (18% of the samples) with high IIG expression levels. 

Among these the hyperdiploid>50 samples were very significantly over-represented.  

            We then turned to analyze the leukemia data (Table 3) of Golub et al.(Golub et al., 

1999), Armstrong et al.(Armstrong et al., 2002) and Rozovskia et al.(Rozovskaia et al., 2003). 

In each of these datasets we also found clear subgroups (containing about 10% of the samples), 

with overexpressed levels of these genes. Again, no common label was shared by the subgroup 

members.  

 

           Next, we ran SPC on datasets of other types of cancer (Table 3): (lymphoma(Shipp et 

al., 2002), prostate(Singh et al., 2002; Welsh et al., 2001) various tumors (Ramaswamy et al., 

2001; Staunton et al., 2001),  ovary(Welsh et al., 2001) , lung(Bhattacharjee et al., 2001) and 

breast(van 't Veer et al., 2002)). We found very small or negligible sub-groups of samples that 

co-expressed the unique sub-group of IIG in the lymphoma, prostate and lung cancers. 

Analysis of the data published by Ramaswamy et al.(Ramaswamy et al., 2001), which contains 

samples from various types of cancer, revealed a small sub-group, 7 out of 280, that also 

contains samples from other types of cancer, but mainly from leukemia, lymphoma and even 

from normal peripheral blood samples. In the lung cancer dataset of 

Bhattacharjee(Bhattacharjee et al., 2001), a clear separation of ~1.5% of the samples was 
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detected. The most significant signal came from the breast cancer data of Van't Veer et al.(van 

't Veer et al., 2002), where 40% of the samples overexpressed these genes (Figure 3), and  the 

ovary cancer dataset of Welsh(Welsh et al., 2001), in which the interferon-related genes were 

overexpressed in about 20% of the samples.  

 

Confirmation of Differential Gene Expression by RQ-PCR 

For an independent verification of this bioinformatic analysis we have examined by 

RQ-PCR the expression of two of the interferon inducible genes IRIFT4 and IRF7 (table 1) in 

RNA derived from diagnostic bone marrow samples of 63 children with B cell precursor ALL. 

These patients were not part of the cohort included in the original microarray analysis of Yeoh 

and al. Despite the limitations imposed by the analysis of only two genes, using SPC, we have 

identified a cluster comprised from 10 patients with significantly higher expression of both 

genes. Interestingly, the average age of these patients was 4.45 years at the time of diagnosis, 

lower than 7.73, the average age in the low expression levels subgroup. The p-value for this 

age difference, assigned by the Student t test, was P = 0.011. All patients but one in the small 

sub-group are in the age range of 2 to 6. There were no statistical significant differences in 

other clinical parameters (although this is a too small group to identify survival patterns). Thus, 

an analysis of gene expression by a different methodology (RQ-PCR) in an independent set of 

patients identified a similar cluster of interferon inducible genes, in a similar fraction (15.8%) 

of patients with B cell precursor ALL.  

 
 

 

DISCUSSION 

 In this work we analyzed recently published gene expression data of different subtypes 

of childhood ALL by means of an unsupervised approach, using the SPC and CTWC clustering 
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methods in order to search for a set (cluster) of genes, whose expression profile separates the 

samples into two (unanticipated) distinct groups. Such a gene cluster was found, and extended 

using the TNoM supervised method. The search for the characteristic gene set was performed 

in a totally unprejudiced "blind" way regarding either the separating gene set or the resulting 

partition of the samples. Surprisingly, a special set of genes was found to be highly expressed 

in a small minority (0-14%) of samples of the various leukemia subtypes, and in a relatively 

high percentage (37%) of the hyperdiploid (>50) ALL subgroup that constitutes a large part of 

the cases in the early childhood peak of leukemia. 17 out of the 30 known genes that appear in 

Table 1 are interferon inducible genes. These include signal transducer and activator of 

transcription 1 (STAT1) and interferon regulatory factor 7 (IRF7), both involved in signal 

transduction downstream to interferon receptors, as well as many interferon alpha induced 

proteins such as interferon induced protein 44, interferon induced transmembrane protein 3, 

interferon induced protein 35, 2’5’-oligoadenylate synthetase 1 and 2, myxovirus resistance 1 

interferon-inducible protein 78 and adenosine deaminase RNA specific. Interferon gamma-

induced proteins such as protein 30 and interferon gamma-induced transcription factor 3 were 

also found in the special gene cluster. Interestingly, several ubiquitin-conjugating enzymes 

such as E2L6 and E2A and proteasome system components such as activator subunit 2 (PA28 

beta), some of them known to be induced by interferon, were also present in the cluster. Such 

proteins are involved in the generation of antigenic peptides that are presented to CD8+ T cells 

by MHC class I molecules. Taken together, many genes relevant to the immune response were 

found to be present in the special cluster of IIG that are highly expressed in the hyperdiploid 

leukemia variant. Of great interest is the presence of apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide-like 3G (APOBEC3G) in the interferon related gene cluster. This enzyme 

was shown lately to confer antiretroviral defense against HIV and other retroviruses through 

lethal editing of nascent reverse transcripts)Mangeat et al., 2003; Zhang et al., 2003(. 

Hypermutation by editing mediated by this enzyme was shown to be an innate defense 
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mechanism against retroviruses. One may speculate that the expression of this gene is an 

indication for retrovirus involvement in childhood leukemogenesis.  

 

The existence of the IIG cluster in B-cell precursor childhood leukemia was confirmed 

in independent cohort using RQ-PCR. This RQ-PCR validation is preliminary and therefore the 

size of the examined gene set was limited.  We plan to extend this analysis to a larger cohort 

with additional genes included in the IIG cluster.  

 

 The search for the IIG cluster in other datasets of several malignant diseases (Table 3) 

indicates that in other datasets of leukemia about 10% of the samples expressed the special 

gene set. In lymphomas, prostate, lung and datasets of a variety of tumors none or a very low 

percentage of the samples expressed the set. The exceptions are the dataset of 49 ovarian 

cancer samples and 96 breast cancer samples; A subset of ~20% of the ovarian cancers and 

~40% of the breast cancers overexpressed the gene set. It is of interest that some epidemiologic 

studies suggested a role for infection in the pathogenesis of other cancers, in addition to 

leukemia, among them both ovarian (Ness et al., 2003) and breast (Ford et al., 2003) tumors. 

The lack of the IIG set in the majority of non-leukemic samples supports the significance of the 

finding in the leukemic samples.  

 

In particular, the prominent appearance of hyperdiploid leukemic samples (that occur in 

early childhood, when viral infection is most likely to occur) and the significant lower age of 

the sub-group of patients from the independent cohort strengthen the hypotheses of Greaves 

and Kinlen. 

 

 The finding that about 40% of breast cancer samples displayed the ‘infection 

associated’ gene signature is of special significance.  Retrovirus-like particles were 
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demonstrated in a breast cancer cell line (Keydar et al., 1984)  and MMTV-like gene sequences 

were detected by PCR in about 40% of  breast cancer samples in several studies (Ford et al., 

2003; Wang et al., 1995). Interestingly, the percentage of cases where retroviral gene 

sequences were identified is very similar to the percentage of cases where the interferon gene 

signature was identified (~ 40%).  The experiment to be done is to look at the same tumor 

samples for both interferon-associated gene expression and for the MMTV-like gene 

sequences,   

 The samples with high expression of the IIG constitute a minority of the malignant 

samples. In the leukemia hyperdiploid subgroup only one third of the samples were positive 

and in the breast cancer cases 40% were positive. Several explanations can be suggested for 

this finding. First, infection can represent only one type of causative factor or “second hit” 

event and other mechanisms may operate in the rest of the cases. Second, the role of infection 

may be indirect, via the dysregulated immune response. Under such a scenario the infectious 

agent can contribute to leukemogenesis in a transient “hit and run” fashion and its fingerprints 

may not be found at the time of diagnosis. In addition, it can be expected that in different 

populations the involvement of viruses can vary, due to environmental and genetic factors, as 

was recently suggested in the case of differential expression of MMTV-like sequences in breast 

cancer patients from Australian and Vietnamese origin (Ford et al., 2003).  

  

 An immune response to viral infection is by no means the only reasonable explanation 

for the IIG signature discovered in these cancer samples.  Since interferons are known to be 

produced by a variety of inflammatory cells (Colonna et al., 2002; Dalgleish & O'Byrne, 2002; 

Ernst, 1999) the induction of interferon responsive genes may reflect the degree of tumor 

inflammation. This may hold particularly for solid tumors, rather than leukemias. Tumor 

infiltrating lymphocytes are commonly found in breast and ovarian cancers (Georgiannos et al., 

2003; Liyanage et al., 2002; Nzula et al., 2003; Reome et al., 2004). Thus the upregulation of 
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interferon inducible genes in a fraction of specific tumors may reflect the response of the 

cancer cells to interferon secreted by host immune cells. Since some of the genes presented in 

the IIG signature are associated with growth inhibitory properties (Chawla-Sarkar M, 2003; 

Sangfelt, 2001; Wall et al., 2003; Zhang et al., 2003) it is tempting to speculate that this 

signature may be associated with improved prognosis. Accordingly, hyperdiploid ALL is 

associated with the best response to chemotherapy and increased rate of apoptosis (Ito et al., 

1999; Pui CH, 2004). Interestingly it has been recently demonstrated that the presence of 

intratumural T-lymphocytes correlated favorably with survival of patients with ovarian cancer 

(Zhang et al., 2003). 

 

 A minority of the genes in the IIG signature e.g STAT1 and IFIT4 may be induced by 

other cytokines or by retinoic acid or chemotherapy (Ihle & Kerr, 1995; Yu et al., 1997). 

However, most of the genes present in this signature are known to be induced prinipally by 

interferons. Also all the analyzed databases included only diagnostic samples prior to exposure 

to chemotherapy. Thus our finding, of a highly expressed “interferon cluster”, combined with 

the epidemiological evidence, most likely implies an immune response, either to viral infection 

or to the tumor cells, leading to interferon secretion, activation of interferon receptors and 

STAT signaling, resulting in the activation of many interferon regulated genes. Nevertheless, 

another possibility, that the pathway was activated by a mutation in the cancer cells, 

independent of a response to the host environment , cannot be completely ruled out. 

Interestingly, three interferon receptor genes are located on chromosome 21, a chromosome 

that is always amplified in hyperdiploid leukemia (Heerema et al., 2000). The role of aberrant 

STAT signaling (mainly STAT3 but not the interferon induced STAT1) and constitutive STAT 

activation in leukemia is the subject of several recent publications (Benekli et al., 2003). It is 

unclear whether constitutive STAT activation itself is the cause or the result of a transforming 

process.  
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We have demonstrated that applying a novel blind unsupervised subgroup discovery approach 

to publicly available gene expression databases allows identification of previously 

unrecognized biologically meaningful molecular signatures. Specifically we identified a set of 

interferon- regulated genes characterizing mainly the hyperdiploid lymphoblastic leukemia, 

breast cancer and ovarian cancers (and, possibly, in other types of cancer that were not studied 

here). The various hypotheses raised by the finding of this novel gene signature in cancers can 

be tested experimentally by the research groups that published the original gene expression 

datasets. For example, it could be interesting to examine the interferon levels in stored serum 

from patients with childhood ALL or to correlate the presence of retroviral particles or the 

degree of infiltration of lymphocytes in breast cancer specimens with the interferon induced 

genes' signature, as well as searching for activating mutations or polymorphisms in interferon 

receptor genes in patients with hyperdiploid childhood ALL.  Clearly, this finding generates 

several biologically testable hypotheses whose potential implications on diagnosis, therapy and 

prevention of childhood leukemia, breast cancer and other malignancies are evident.  
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MATERIALS AND METHODS  

Patients and Specimens.  

Microarray Data. There are several publicly available gene expression datasets on leukemia 

(Armstrong et al., 2002; Golub et al., 1999; Rozovskaia et al., 2003; Yeoh et al., 2002) We 

analyzed the data of Yeoh et al.(Yeoh et al., 2002), that tested diagnostic bone marrow samples 

from 327 ALL patients using Affymetrix U95A microarrays containing 12,533 probe sets. The 

samples were collected at the time of discovery of the disease, prior to administering any 

therapy. Expression levels were measured for 335 samples of bone marrow and peripheral 

blood representing several different ALL subtypes (T-ALL, E2A-PBX1, BCR-ABL, TEL-AML1, 

MLL, hyperdiploid >50 chromosomes, hyperdiploid 47-50 and hypodiploid). We expanded the 

analysis to other publicly available datasets of leukemia (Armstrong et al., 2002; Golub et al., 

1999; Rozovskaia et al., 2003) and other cancers including: lymphoma (Shipp et al., 2002), 

prostate (Singh et al., 2002; Welsh et al., 2001), ovary (Welsh et al., 2001), lung (Bhattacharjee 

et al., 2001) and breast (van 't Veer et al., 2002).  

Quantification by real time quantitative PCR (RQ-PCR): The expression of IRF7 and 

IRFIT1 was quantified in RNA derived from diagnostic bone marrow samples given with an 

informed consent by 63 children with B cell precursor ALL. RNA isolation, cDNA synthesis 

and RQ-PCR were performed as described by us (U.O) before (Akyerli et al., 2005). For every 

sample the amount and the quality of RNA was normalized by dividing by the corresponding 

arrythmetic median of Beta 2 microglobin and c-Abl “housekeeping” genes. Primer sequences 

(5’-3’) were: IRFIT1: forward CACATGGGCAGACTGGCAG, reverse 

GCGGAAGGGATTTGAAAGCT; IRF7 forward TCCCCACGCTATACCATCTACC, reverse 

CAGGGTTCCAGCTTCACCAG;  
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Beta–2-Microglobulin (B2M) forward TGCCGTGTGAACCATGTGAC,  reverse 

ACCTCCATGATGCTGCTTACA; c-ABL forward CCCAACCTTTTCGTTGCACTGT, 

reverse  CGGCTCTCGGAGGAGACGTAGA. 

 

Microarray data analysis 

Preprocessing and filtering the data. We worked with an expression matrix organized in 335 

columns (samples) and 12,533 rows (genes). Each value in the matrix is the expression level of 

a certain gene in a certain patient. Rows (genes) in which more than 20% of the values were 

lower than some threshold (T=10) were removed. After this filtering 6,653 genes remained. In 

these rows the values that were lower than T were replaced by estimates based on the values of 

the 13 nearest neighbors' genes(Troyanskaya et al., 2001). Next, logarithm (base 2) of each 

entry was taken, and the genes were filtered on the basis of their variation across the samples. 

Two sets, of 3000 and of 6500 genes were chosen, on the basis of their standard deviations, for 

the Coupled-Two Way Clustering (CTWC) step and for the Threshold Number of 

Misclassifications (TNoM) test, respectively.  Similar procedures were followed for each of the 

additional data-sets. 

Unsupervised analysis: Clustering. In order to separate the ALL samples into unanticipated 

sub-groups, we searched for a cluster (e.g. correlated set) of genes with a distinct expression 

profile in one part of the samples, and another profile in the other part. Since hypothesis testing 

can not reveal unexpected partitions, unsupervised techniques, such as clustering, are more 

suited for such a task.  The CTWC  method (Getz et al., 2000) focuses on correlated groups of 

genes, one group at a time.  Relevant subsets of genes and samples are identified by means of 

an iterative process, which uses at each iteration level stable gene and sample clusters that were 

generated at the previous step. The ability to focus on stable, statistically significant clusters 
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that were generated by the underlying clustering operation is essential for the CTWC method. 

Since Superparamagnetic Clustering (SPC) (Blatt et al., 1996) provides a reliable stability 

index, it is the method of choice to use in the CTWC scheme. The SPC  algorithm is based on 

the physical properties of  inhomogeneous ferromagnets (Blatt et al., 1996; Blatt et al., 1997; 

Getz et al., 2000). The unsupervised CTWC step yields a list (cluster) of genes, whose 

expression levels separate the samples into two groups, which constitute the starting point of 

the next, supervised steps of the analysis. 

Supervised analysis. We used supervised methods in order to expand and refine the list of 

genes that was obtained by the unsupervised CTWC step. Using hypothesis testing 

(TNoM)(Ben-Dor et al., 2000), we tested genes, one at a time, to see whether their expression 

differentiates the two groups of samples that were identified by CTWC. This step provides an 

extended set of genes, which is now used to identify, in an unsupervised manner, samples that 

belong to classes of relatively high expression. This procedure is reminiscent in spirit of the 

signature method (Ihmels et al., 2002), albeit the latter uses a known set of genes (or 

conditions) as it's seed and does not switch to supervised statistical tests to refine the genes it 

found.  

 For binary class comparisons we used a non-parametric statistical test,  TNoM (Ben-

Dor et al., 2000), which tests whether the expression value of a certain gene can predict the 

class of the sample. An informative gene is expected to have quite different values in the two 

classes, and thus we should be able to separate these by a threshold value. TNoM provides an 

appropriate score according to the quality of separation. For each score we calculate its P-

value, as describe in Ben-Dor et al(Ben-Dor et al., 2000).  In order to control contamination 

with false positive genes associated with multiple comparisons we used the method of 

Benjamini and Hochberg(Benjamini & Hochberg, 1995) that bounds the average false 
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discovery rate (FDR); namely, the fraction of false positives among the list of differentiating 

genes.  
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Table 1. Genes that separate the ALL samples into two subgroups 

 

Gene 

Probe ID 

Title Gene 

Symbol 

TEL-AML1 

CTWC 

step (i) a

TNoM 1 

step(ii)b 

( P value) 

 

TNoM 2 

step(iv)c 

(P value) 

36927_at chromosome 1 open reading frame 29 C1orf29 + 0.000115 6.69E-35 

925_at interferon, gamma-inducible protein 30 IFI30 +  2.51E-32 

915_at 

(32814_at) 

interferon-induced protein with tetratricopeptide 

repeats 1 

IFIT1 + 6.06E-06 2.51E-32 

37641_at interferon-induced protein 44 IFI44 + 6.06E-06 4.44E-31 

37014_at myxovirus (influenza virus) resistance 1 MX1 + 6.06E-06 7.40E-30 

38584_at interferon-induced protein, tetratricopeptide 

repeats 4 

IFIT4 + 0.000115 1.17E-28 

1107_s_at 

(38432_at) 

interferon, alpha-inducible protein (clone IFI-15K) G1P2 + 6.06E-09 3.41E-25 

38389_at 2',5'-oligoadenylate synthetase 1, 40/46kDa OAS1 + 0.000115 4.43E-24 

39263_at 

(39264_at) 

2'-5'-oligoadenylate synthetase 2, 69/71kDa OAS2 + 0.000115 5.51E-23 

38014_at adenosine deaminase, RNA-specific ADAR  6.06E-09 6.57E-22 

38517_at interferon-stimulated transcription factor 3, gamma ISGF3G   8.76E-19 

1358_s_at   + 6.06E-09 8.35E-16 

38662_at Homo sapiens, clone IMAGE:4074138, mRNA  

sequence 

  6.06E-06 7.67E-15 

37360_at lymphocyte antigen 6 complex, locus E LY6E  6.06E-06 3.94E-11 

35718_at SP110 nuclear body protein SP110   2.35E-09 

33339_g_at 

(32860_g_at) 

signal transducer and activator of transcription 1, 

91kDa 

STAT1 +  1.74E-08 

464_s_at interferon-induced protein 35 IFI35  0.000115 8.77E-07 

914_g_at  v-ets erythroblastosis virus E26 oncogene like (avian) ERG   5.98E-06 
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(36383_at) 

40054_at KIAA0082 protein KIAA0082   5.98E-06 

37352_at 

(3753_g_at) 

nuclear antigen Sp100 SP100 + 6.06E-06 5.98E-06 

34947_at 

(41472_at) 

apolipoprotein B mRNA editing enzyme, catalytic 

polypeptide-like 3G 

APOBEC3G   3.97E-05 

36845_at nuclear matrix protein NXP-2 NXP-2   3.97E-05 

40505_at ubiquitin-conjugating enzyme E2L 6 UBE2L6  0.000115 3.97E-05 

41841_at Homo sapiens clone 23718 mRNA sequence    0.000257 

39061_at bone marrow stromal cell antigen 2 BST2   0.000257 

32800_at retinoid X receptor, alpha RXRA   0.000257 

38805_at TGFB-induced factor (TALE family homeobox) TGIF   0.000257 

890_at ubiquitin-conjugating enzyme E2A (RAD6 homolog) UBE2A   0.000257 

40852_at tudor repeat associator with PCTAIRE 2 PCTAIRE2

BP 

+   

32775_r_at phospholipid scramblase 1 PLSCR1 +   

36412_s_at interferon regulatory factor 7 IRF7 + 2.36E-07  

41745_at interferon induced transmembrane protein 3 (1-8U) IFITM3  6.06E-06  

676_g_at 6-pyruvoyltetrahydropterin synthase PTS  0.000115  

1184_at 

(41171_at) 

proteasome (prosome, macropain) activator subunit 2 

(PA28 beta) 

PSME2  6.06E-06  

 a In the 'TEL-AML CTWC step (i)' column we mark by + the genes that were obtained by the initial CTWC (step 

(i) of our analysis); two out of the 16 probe-sets correspond to the same gene and hence only 15 genes are marked.  

bThe 'TNoM1 step (ii)' column gives P-values of the genes that separate 8 versus 71 TEL-AML1 samples 

according to the TNoM test, at FDR=0.05. Only 19 genes are indicated (out of 23 probe-sets), again because of 

multiple representations. cThe 'TNoM2 step (iv)' column indicates 28 probe sets that separate all the ALLs into 

two subgroups of 50 versus 285 samples (see  text). The genes that are known to be part of the interferon-

JAK/STAT pathway are in bold face. In cases when two probe sets represent the same gene symbol, the lower p-

value was taken.   
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 Table 2. The number of samples from each subtype in the Yeoh et al.(Yeoh et al., 2002) dataset and in the 

new subgroup 

  

Subtype name Number  

of samples 

Number 

in subgroup 

Hyperdip>50 65 24 

TEL-AML1 79 10     

Pseudodip 29 4 

Normal 19 4 

Hyperdip 47-50 23 3 

T-ALL 45 2 

BCR-ABL 16 2 

MLL 21 1 

Hypodip 11 0 

E2A-PBX1 27 0 

Total: 335 50 

   

Novel subtype (as found 

by Yeoh et al.) 

14 6 

 

 

 

 

 

 

 

 

 28



Table 3. Datasets that were examined by the CTWC algorithm using the interferon related set of genes 

 

Datasets Type of samples Overexpressed samples  

Golub et al.(Golub et al., 

1999) 

60 leukemic samples of ALL and AML 5 samples, 4 of them are MLL 

Armstrong et 

al.(Armstrong et al., 2002) 

72 leukemic samples: 24 ALL, 20 AML 

and 28 MLL 

7 samples (4 ALL, 2 MLL, 1 AML) 

Rozovskia et 

al.(Rozovskaia et al., 2003) 

60 leukemic samples of ALL, MLL and 

CD10- ALLs 

6 MLL and ALL 

Shipp et al.(Shipp et al., 

2002) 

Lymphoma samples from 58 DLBCL 

patients and 19 FL patients 

None  

Welsh et al. 

(Prostate)(Welsh et al., 

2001) 

55 prostate cancer samples None  

Singh et al.(Singh et al., 

2002)  

102 prostate cancer samples None  

Staunton et al.(Staunton et 

al., 2001) 

60 samples from various types of 

cancer 

Poor separation of 3 samples (taken from breast cancer, 

renal cancer and leukemia patients)  

Ramaswamy et 

al.(Ramaswamy et al., 

2001) 

280 samples from various types of 

cancer 

7 samples: 1 lymphoma samples, 2 leukemia AML 

samples, 1 breast cancer sample , 1 bladder cancer 

sample and 2 samples taken from normal peripheral 

blood 

Welsh et al. (ovary)(Welsh 

et al., 2001) 

49 ovary cancer samples ~10 samples  

Bhattacharjee et 

al(Bhattacharjee et al., 

2001)  

203 Lung cancer samples 6 samples. Other ~40 samples expressed intermediate 

mRNA level. 
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Figure 1. Expression values of the cluster of 16 genes, found by CTWC, in 79 TEL-AML1 

samples. The values are centered (mean expression of each gene = 0) and normalized (std = 1). 

These genes are overexpressed in a group of 8 (out of 79) TEL-AML1 samples. 
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Figure 2. Expression values of the group of 23 genes in 335 ALL samples. The values are 

centered (mean expression of each gene = 0) and normalized (std = 1). These genes are 

correlated and overexpressed in a group of 50 ALL samples, that consist mainly of 

hyperdiploid>50 and TEL-AML1 subtypes. 
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Figure 3. Expression values of 12 genes in 96 breast cancer samples (van 't Veer et al., 2002). 

The values are centered (mean expression of each gene = 0) and normalized (std = 1). 

Approximately 40% of the samples, to the right of the black dotted line, overexpress these 

genes. The differentiating genes are: IFI35, IFI30, STAT1, LY6E, OAS2, OAS1, IFIT1, 

UBE2L6, IFIT4, PLSCR1, IRF7, MX1. 
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