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Abstract

A central task in the study of molecular sequence data from present-day species is the reconstruction
of the ancestral relationships. The most established approach to tree reconstruction is the maxi-
mum likelihood (ML) method. In this method, evolution is described in terms of a discrete-state
continuous-time Markov process on a phylogenetic tree. The substitution rate matrix, that deter-
mines the Markov process, can be estimated using the expectation maximization (EM) algorithm.
Unfortunately, an exhaustive search for the ML phylogenetic tree is computationally prohibitive
for large data sets. In such situations, the neighbor-joining (NJ) method is frequently used because
of its computational speed. The NJ method reconstructs trees by clustering neighboring sequences
recursively, based on pairwise comparisons between the sequences. The NJ method can be general-
ized such that reconstruction is based on comparisons of subtrees rather than pairwise distances. In
this paper, we present an algorithm for simultaneous substitution rate estimation and phylogenetic
tree reconstruction. The algorithm iterates between the EM algorithm for estimating substitution
rates and the generalized NJ method for tree reconstruction. Preliminary results of the approach
are encouraging.

1 Introduction

Current efforts to reconstruct the tree of life for different organisms demand the inference of phy-
logenies from thousands of DNA sequences. The first author is at a university where the tree of
life for flies is investigated (http://www.inhs.uiuc.edu/cee/FLYTREE/) and the second author is
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at a university where the tree of life for fungi is considered (http://ocid.nacse.org/research/aftol/).
For such large data sets the tree space is enormous and identification of the optimal tree is a major
challenge.

The evolution of homologous DNA sequences can be described by continuous time Markov chains
on a phylogenetic tree [8]. A continuous time Markov chain is characterized by a substitution rate
matrix, and the phylogenetic tree summarizes the relationships between the species in terms of edge
lengths (times since divergence) and common ancestors. The DNA sequences are only observed
in the leaves, and information on the phylogenetic tree, substitution events (time and type) and
edge lengths is missing. The transition matrix P (t) for a continuous time Markov process can be
written as exp(Qt), where Q is a parameterized substitution rate matrix. In order to estimate the
rate parameters and edge lengths for a fixed tree and based on the observed data, one can use
the expectation maximization (EM) algorithm [10]. The updating step of the EM algorithm can
be written explicitly in terms of eigenvalues and eigenvectors of Q. The continuous time Markov
process gives rise to a distance measure between any sets of sequences. Pairwise distances can
be used, together with the neighbor joining (NJ) algorithm, to reconstruct the phylogenetic tree
that relates the sequences. The generalized neighbor joining (GNJ) algorithm [11] improves the NJ
algorithm by using distance measures based on subtrees rather than pairwise distances.

In this paper, we describe an algorithm that simultaneously estimates the substitution rate
matrix and reconstructs the phylogenetic tree. The algorithm iterates between the EM algorithm
for rate matrix estimation and the GNJ algorithm for phylogenetic tree reconstruction. We are in
the process of implementing the algorithm, and preliminary results are encouraging.

2 The EM algorithm

2.1 Two sequences

Consider the somewhat unreasonable situation where we have access to the complete observation
(the hidden model or the complete data model) of the evolution of a single site. The state of the
process at time t is denoted x(t), and we have observed the process from time t = 0 to time t = T .
In this paper the size α of the state space is 4 corresponding to the four nucleotides Σ ={A,G,C,T},
but our method can also be applied to protein-coding sequences where the state space is of size 61
because there are 61 sense codons. Continuous-time Markov processes are described in e.g. [9].

We now derive the likelihood for a complete observation of a continuous-time Markov process
with substitution rate matrix Q. Suppose the evolution of a single site has been completely observed
from time t = 0 to time t = T and is given as in Fig. 1. We model the evolution in terms of a
continuous-time Markov process with substitution rate matrix Q. Recall that a rate matrix has
non-negative off-diagonal entries and each row sums to zero. Let Q(a, b) be the entry of Q in
the ath column and the bth row. The waiting time in a state a is exponentially distributed with
parameter −Q(a, a) and the probability of substituting a with b is proportional to Q(a, b). Thus,

2

http://ocid.nacse.org/research/aftol/


the likelihood for the complete observation in Fig. 1 is given by

L(Q) = Q(1, 1)eQ(1,1)t1 Q(1, 3)

Q(1, 1)
Q(3, 3)eQ(3,3)(t2−t1)Q(3, 1)

Q(3, 3)
Q(1, 1)eQ(1,1)(t3−t2)Q(1, 2)

Q(1, 1)
eQ(2,2)(T−t2)

= eQ(1,1)(t1+(t3−t2))+Q(2,2)(T−t2)+Q(3,3)(t2−t1)Q(1, 2)Q(1, 3)Q(3, 2),

where indices 1,2,3,4 corresponds to A,G,C,T.

✲

Time0 Tt1 t2 t3

State

A

G

C

T

t ❞

t ❞

t ❞

t

Figure 1: Complete observation of the evolution of a single site in a DNA sequence.

More generally, if the rate matrix is parametrized by θ, Q = Qθ, and with x = {x(t) : 0 ≤ t ≤
T}, the maximum likelihood estimation problem for a complete observation is:

maximize L(θ;x) =





∏

a∈Σ

∏

b6=a

fab(θ)
N(a,b)





[

∏

a∈Σ

f ′
a(θ)

T (a)

]

subject to θ ∈ Θ. (1)

Here fab(θ) and f ′
a(θ) are functions from R

d → R+ = {x ∈ R : x > 0} such that fab(θ) =
Qθ(a, a), f

′
a(θ) = exp(Qθ(a, a)) for θ ∈ Θ ⊂ R

d, T (a) is the total time spent in state a, and N(a, b)
is the number of substitutions of a with b. Thus, the log-likelihood for a complete observation
becomes

logL(θ;x) =
∑

a∈Σ

T (a)Qθ(a, a) +
∑

a∈Σ

∑

b6=a

N(a, b) logQθ(a, b). (2)

Note that the complete log-likelihood is linear in the total time spent in a state and the number of
substitutions between states. The complete log-likelihood function is analytically tractable. Indeed,
as argued in [10], in most Markov processes of sequence evolution the maximum likelihood estimates
can be found analytically from a complete observation.

Consider for example the general time reversible (GTR) model. Let πa, a ∈ Σ,
∑

a πa = 1,
denote the stationary distribution of the Markov chain. This distribution can be estimated from
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the nucleotide frequencies in a single sequence. The GTR model has substitution rate matrix (e.g.,
[20])

Qθ =









· θ12π2 θ13π3 θ14π4
θ12π1 · θ23π3 θ24π4
θ13π1 θ23π2 · θ34π4
θ14π1 θ24π2 θ34π3 ·









(3)

where the diagonal elements are such that each row sums to zero and the 6 unknown parameters
are θ = (θ12, θ13, θ14, θ23, θ24, θ34). A simple calculation shows that the complete log-likelihood (2)
is maximized for

θ∗ab =
N(a, b) +N(b, a)

πbT (a) + πaT (b)
, a < b.

The problem is, however, that the DNA sequences are only observed in the leaves, whereas
information on substitution events (time and type) and edge lengths is missing. For two sequences
we only observe the beginning state x(0) and the final state x(T ) of the process. We have a missing
data problem in the sense that we only have access to part of the data.

The Expectation Maximization (EM) algorithm [3] is a broadly applicable approach for missing
data problems. The algorithm is an iterative procedure with two steps in each iteration, the
Expectation Step (E-step) and the Maximization Step (M-step). The algorithm approaches the
problem of solving the actually observed log-likelihood indirectly by proceeding iteratively in terms
of the complete log-likelihood. As the complete log-likelihood is unobservable, it is replaced by its
conditional expectation given the observed data y = {x(0), x(T )}. In the E-step of the (k + 1)’th
iteration, the function G(θ; θk) = Eθk [logL(θ;x)|y] is calculated, and in the M-step a new parameter
value θk+1 is obtained as the value of θ that maximizes G(θ; θk). For the GTR model (3) the M-step
becomes

θ∗ab =
Eθk [N(a, b)|x(0), x(T )] + Eθk [N(b, a)|x(0), x(T )]

πbEθk [T (a)|x(0), x(T )] + πaEθk [T (b)|x(0), x(T )]
, a < b.

The algorithm converges to a local maximum likelihood estimate of the observed data.
Since the complete log-likelihood is linear in the time spent in a state and the number of

transitions between states, and expectation is a linear operator, all we need in the E-step is to
calculate conditional expectations of these two quantities given the observed data. The conditional
expectations are provided in the following theorem.

Theorem 1 (Conditional expectations [10]). Consider a continuous time Markov process
{x(t) : 0 ≤ t ≤ T} on a finite state space with rate matrix Q. Denote the transition matrix
P (t) = exp(Qt). We have the following conditional expectations:

• Time spent in state a

E[T (a)|x(0) = i, x(T ) = j] =

∫ T

0
Pia(t)Paj(T − t)dt/Pij(T ).
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• Number of transitions between states a and b

E[N(a, b)|x(0) = i, x(T ) = j] = Q(a, b)

∫ T

0
Pia(t)Pbj(T − t)dt/Pij(T ).

The transition probability matrix P (t) = exp(Qt) with entries Pab(T ) = P (X(T ) = b|X(0) =
a) is calculated using an eigenvalue decomposition of Q. Let U be the orthogonal matrix with
eigenvalues as columns and Dλ the diagonal matrix of corresponding eigenvectors such that Q =
UDλU

−1 and P (T ) = eQT = UeTDλU−1. In the most general case some of the eigenvalues and
eigenvectors are complex. Conditional expectations are now found from

∫ T

0
Pab(t)Pcd(T − t)dt =

∑

i

UaiU
−1
ib

∑

j

UcjU
−1
jd Jij , where Jij = eTλj

∫ T

0
et(λi−λj)dt.

Even when the eigenvalues are complex, the Jij integrals are easy to evaluate.
In the case of multiple sites that are identically distributed and evolve independently we can

summarize the data in a frequency table ν(i, j) that summarizes the number of sites with x(0) = i
and x(T ) = j. In this case the complete log-likelihood conditional on the observed data becomes

G(θ; θk) =
∑

i

∑

j

ν(i, j)Eθk [logL(θ;x)|x(0) = i, x(T ) = j].

The linearity in the time spent in a state and the number of jumps between states is maintained and
the EM-algorithm remains simple. Indeed, the conditional expectations are given by Theorem 1
and the M-step for the GTR model becomes

θ∗ab =

∑

i

∑

j ν(i, j)(Eθk [N(a, b)|x(0) = i, x(T ) = j] + Eθk [N(b, a)|x(0) = i, x(T ) = j])
∑

i

∑

j ν(i, j)(πbEθk [T (a)|x(0) = i, x(T ) = j] + πaEθk [T (b)|x(0) = i, x(T ) = j])
.

Note that because we assume P (t) = exp(Qt), t and Q are confounded. Indeed, Qt =
(2Q)/(t/2), which means that twice the rate at half the time has the same results. To avoid
confounding, the rate matrix is calibrated such that time corresponds to expected changes per site.
This means that

∑

i

∑

j 6=i πiQij = 1.

2.2 Multiple sequences

Now consider the case of multiple sequences related by an unrooted phylogenetic tree with n leaves
(terminal nodes), n terminal edges, n − 2 internal nodes and n− 3 internal edges. The single site
complete log-likelihood becomes

logL(θ;x) =

2n−3
∑

i=1

(

∑

a∈Σ

T i(a)Qi(a, a) +
∑

a∈Σ

∑

b6=a

N i(a, b) logQi(a, b)
)

where T i(a) is the total time spent in state a on edge i and N i(a, b) is the number of transitions from
a to b on edge i. Letting y = (y1, . . . , yn) be the observed data at the leaves and letting a(i), d(i)
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be the ancestral and descendant values at the two ends of the edge with descendant node i we get
from the Markov property

G(θ; θk) =
2n−3
∑

i=1

∑

a(i),d(i)

Eθk

[

∑

a∈Σ

T i(a)Qi(a, a) +
∑

a∈Σ

∑

b6=a

N i(a, b) logQi(a, b)|a(i), d(i)
]

Pθk(a(i), d(i)|y).

Here Pθk(a(i), d(i)|y) is the probability of observing the ancestral value a(i) and descendant value
d(i) at the edge with descendant node i given the data y. These probabilities are calculated using
Felsenstein’s peeling algorithm [6]. In the E-step we therefore need to calculate conditional mean
values on each edge. Conditioning on a(i) and d(i), the conditional mean values are determined by
Theorem 1

In this paper we consider the case where the rate matrix is the same on all edges, but the
length varies between edges. For example, the rate matrix Q could be the GTR rate matrix (3)
calibrated.The rate matrix on each edge i is then given by Qi = wiQ, i = 1, . . . , 2n − 3, where
wi is the length of the edge with descendant node i. The M-step is slightly more complicated for
multiple sequences compared to pairwise sequences, but can be carried out as described in [10].

3 Generalized neighbor-joining

We will consider binary trees, meaning that all terminal nodes are of degree one and all internal
nodes are of degree three. Given a tree, its edge lengths are said to be additive if the distance
between any pair of leaves is the sum of the lengths of the edges on the path connecting them.
Homogeneous finite-state continuous time Markov models satisfy

∑

k

Pik(t1)Pkj(t2) = Pij(t1 + t2). (4)

Define the maximum likelihood distance [5] between a pair of leaves {i, j} by

d(i, j) = argmaxt

{

N
∏

s=1

Pyi(s),yj(s)(t)
}

where yi = (yi(1), . . . , yi(N)) is the DNA sequence of length N observed at leaf i. Suppose the
leaves i and j are connected by node k. Using (4) and consistency of maximum likelihood we get
d(i, j) ≈ t1 + t2. Extending this argument to a general phylogenetic tree we see that maximum
likelihood distances based on continuous time Markov chains between leaf sequences should be close
to additive if there is enough data to obtain reliable estimates of the pairwise distances.

3.1 Saitou-Nei neighbor-joining method

Given a binary tree Γ with additive edge lengths, we can reconstruct it from the pairwise distances
d(i, j) of its leaves {i, j} using the neighbor-joining method of Saitou and Nei (1987). Firstly, pick
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a cherry {i, j} in the tree, i.e. leaves that have the same parent node l. Secondly, remove the leaves
i and j from the set of leaves and add l, defining its distance to any other leaf k by

d(l, k) =
1

2
(d(i, k) + d(j, k) − d(i, j))

and edge lengths wi and wj of edges with descendant nodes i and j, respectively, by

wi =
1

2



d(i, j) +
1

n− 2

∑

k 6=i,k 6=j

(d(i, k) − d(j, k))



 (5)

wj = d(i, j) − wi. (6)

Repeat the procedure until the number of leaves n is 3. The main problem is picking the cherry,
and a solution was suggested in Saitou and Nei [17] and modified by Studier and Keppler [18].

Theorem 2 (Cherry picking criterion [17, 18]). Let d be an additive tree metric and define
the n× n-matrix B with entries

B(i, j) = (n− 2)d(i, j) −
∑

k 6=i

d(i, k) −
∑

k 6=j

d(j, k).

Then the pair of leaves {i∗, j∗} that minimizes B is a cherry in the tree Γ.

3.2 The generalized neighbor-joining method

It is natural to ask if we can generalize the neighbor-joining method based on pairwise distances
to distances based on subtrees. Here, a subtree is a set of leaves and a subtree distance is the
sum of the lengths of the edges on the path connecting the subtree leaves. Distances based on
subtrees are expected to be more accurately determined than pairwise distances because of the
following reasons: (1) they are calculated from more data, and (2)we include more conditions
to the calculation. (When we calculate pairwise distances via MLEs, we assume that each path
containing a pair is independent, while they are not independent because each path share some
branches with the other.) Pachter and Speyer [13] show that binary trees with additive edge lengths
are indeed determined from distances based on subtrees. Let Ω be set of leaves in the tree Γ and
let

(

Ω
m

)

be the set of all m-subsets of Ω. Then we denote D(R) for R ∈
(

Ω
m

)

the subtree distance of

the subtree containing R ∈
(

Ω
m

)

.

Theorem 3 (Subtree distance condition [13]). Let Γ be binary tree with additive edge lengths.
Let m, 2 ≤ m ≤ (n+1)/2, be the size of each subtree. The tree Γ is uniquely determined from the
set {D(R) : R ∈

(Ω
m

)

}.

Pachter and Speyer do not describe how to reconstruct the tree and calculate the edge lengths
from the subtree distances. The tree reconstruction can be found in [11] and is a two-stage proce-
dure.
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Theorem 4 (Equivalent topologies [11]). Suppose that {i, j} is a pair of leaves in the set of
leaves Ω with n = |Ω| and suppose that 2 ≤ m ≤ n− 2. Define the pairwise distances

d̃(i, j) =
∑

Λ∈(Ω\{i,j}
m−2

)

D({i, j,Λ}). (7)

The tree Γ̃ based on the additive tree metric d̃ has the same topology as the tree Γ based on the
additive tree metric D.

We can thus find the topology of the tree Γ by using the cherry picking criterion in Theorem 2
on the pairwise distances d̃(i, j). Using equations (5) and (6) we can also find the edge lengths w̃i

for any edge ẽi in the tree Γ̃. In [11] the map between the edge lengths in Γ̃ and the edge lengths
in Γ is also described. The map between the edge lengths in the two metrics is linear and one-to-one
and given as follows.

Theorem 5 (Map between edge lengths [11]). Let Γ, Γ̃, m and n as in Theorem 4. and let
Lj(e) denote the set of leaves in the component of Γ− e (or equivalently Γ̃− e) that contains leaf j
after removing an edge e.

1. Let ei, i = n+ 1, . . . , 2n − 3, denote the internal edges of Γ with lengths wi and let ẽi be the
corresponding internal edges of Γ̃ with lengths w̃i. Then

wi =
2w̃i

(|La(ei)|−2
m−2

)

+
(|Lc(ei)|−2

m−2

)
, i = n+ 1, . . . , 2n − 3,

where a and c are the leaves on opposite sides of the edge ei.

2. Denote the terminal edges of Γ by e1, . . . , en with corresponding edges ẽ1, . . . , ẽn in Γ̃. Let

Ci =

2n−3
∑

j=n+1

((

n− 2

m− 2

)

−

(

|Li(ej)| − 2

m− 2

))

wj

Then






w1
...
wn






= A







2w̃1 − C1
...

2w̃n − Cn






, where A =

1

2
(

n−3
m−2

)

(

I −
m− 2

(m− 1)(n − 2)
J

)

.

Here, I is the identity matrix and J is the matrix consisting entirely of 1s.

The running time for computing the subtree distances is O(Lnm) where L is the length of
the alignment and the computation of the distance matrix d̃ is O(nm) (both steps are trivially
parallelizable). The subsequent neighbor-joining is O(n3) and edge weight reconstruction is O(n2).
It is interesting to note that for fixed L the running time of the algorithm is O(n3) for both m = 2
and m = 3.
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4 The EMGNJ algorithm

Suppose we wish to estimate the GTR model. The EMGNJ algorithm consists of two main parts,
reconstructing a tree via the GNJ method and improving GTR rates via the EM algorithm. We
iterate these steps until it converges.

Algorithm 6 (The EMGNJ algorithm). Suppose we have n DNA sequences and an integer
2 ≤ m ≤ n− 2.

Input: n DNA sequences and an integer 2 ≤ m ≤ n− 2.
Output: The GTR rates and a phylogenetic tree.

1. Estimate stationary distribution from empirical frequencies.

2. Reconstruct tree using MJOIN under the Jukes-Cantor (JC69) model.

3. Estimate GTR substitution rates and edge lengths from current tree.

4. Reconstruct tree using MJOIN and current GTR rates.

5. If likelihood is not improved return current tree and GTR rates; otherwise go to 3.

In other words, we provide starting values of the algorithm in Step 1 and Step 2 and iterate
Step 3 and Step 4 until convergence.

5 Computation

We implemented subroutines of the EMGNJ algorithm, Step 3 and Step 4 with m = 4 under the JC
model. We plan that a full implementation of the algorithm will be released soon. We applied our
implementation to find the phylogenetic tree for 21 S-locus receptor kinase (SRK) sequences from
[14] involved in the self/nonself discriminating self-incompatibility system of the mustard family
described in [12].

We sampled 10, 000 trees from a Markov chain with stationary distribution proportional to the
likelihood function by means of a Markov chain Monte Carlo (MCMC) algorithm implemented
in PHYBAYES [1]. We then compared the tree topology of each tree generated by this MCMC
method with that of the reconstructed trees via Step 3 and Step 4 in the EMGNJ method, Saitou-
Nei NJ method, fastDNAml, DNAml from PHYLIP package by [7], and TrExML [19] under their
respective default settings with the JC69 model. We used treedist from PHYLIP to compare two
tree topologies. If the symmetric difference ∆ between two topologies is 0, then the two topologies
are identical. Larger ∆’s are reflective of a larger distance between the two compared topologies.
Table 1 summarizes the distance between a reconstructed tree and the MCMC samples from the
normalized likelihood function. For example, the first two elements in the third row of Table 1 mean
that 171 out of the 10, 000 MCMC sampled trees are at a symmetric difference of 4 (∆ = 4) from
the tree reconstructed via Saitou-Nei NJ method (with pairwise distance). DNAml was used in
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Table 1: Symmetric difference (∆) between 10, 000 trees sampled from the likelihood function via
MCMC and the trees reconstructed by 5 methods. sub-EMGNJ means the implementation of
subroutines, Step 3 and Step 4.

∆ sub-EMGNJ Saitou-Nei NJ fastDNAml DNAml(A) DNAml(B) TrExML

0 0 0 0 2 3608 0
2 77 0 0 1 471 0
4 3616 171 6 3619 5614 0
6 680 5687 5 463 294 5
8 5615 4134 3987 5636 13 71

10 12 8 5720 269 0 3634
12 0 0 272 10 0 652
14 0 0 10 0 0 5631
16 0 0 0 0 0 7

two ways: DNAml(A) is a basic search with no global rearrangements, whereas DNAml(B) applies
a broader search with global rearrangements and 100 jumbled inputs. The fruits of the broader
search are reflected by the accumulation of MCMC sampled trees over small ∆ values from the
DNAml(B) tree. Note that the tree topology for the reconstructed tree via Step 3 and Step 4 in
the EMGNJ method and one via the GNJ method (MJOIN [11]) have the same tree topology.

6 Conclusion

We expect to improve the results using a full implementation of the EMGNJ method for two main
reasons: (1) Even though currently we have an implementation with subroutines Step 3 and Step
4, the result is improved compared to Saitou-Nei NJ method and to fastDNAml as in Table 1 (2)
Iterating Step 3 and Step 4 should improve the GTR rates.

We want to investigate the number of iterations until the output from the EMGNJ method
converges. It is also of interest to study the results with different values of m.

7 Discussion

A potential problem is that the EM algorithm often get stuck in local maxima. We might be able to
avoid this problem using Moore Rejection Sampling [16]. We sample data via the sampler for each
subtree and we reconstruct trees with a set of samples under the JC69 model. Then we estimate
the GTR rates and trees via the EMGNJ method. At the end, we compare the likelihood values of
these trees and we take the tree with the biggest likelihood value. One notices that the process to
reconstruct trees via the EMGNJ method from samples can be parallelizable.
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