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Abstract

Cellular life requires the presence of a set of biochemical mechanisms in order to

maintain a predictable process of growth and division. Several attempts have been

made towards the building of minimal protocells from a top-down approach, i.e.

by using available biomolecules This type of synthetic approach has so far been

unsuccesful, and the lack of appropriate models of the synthetic protocell cycle

might be needed to guide future experiments. In this paper we present a simple

biochemically and physically feasible model of cell replication involving a discrete

semi-permeable vesicle with an internal minimal metabolism involving two

reactive centers. It is shown that such a system can effectively undergo a whole cell

replication cycle. The model can be used as a basic framework to model whole



protocell dynamics including more complex sets of reactions.  The possible

implementation of our design in future synthetic protocells is outlined.

INTRODUCTION

Membranes take part in many of the essential processes involved in the

maintenance of cellular life (Albert et al., 2005; Lodish et al, 2005). They define the

boundaries separating the inside world of chemical reactions and information from the

outside environment. They play a very important role in exchanging substances with the

external medium and in the growth and later cellular division. Current cells are very

complex, as a result of a long evolutionary process, and have sophisticated mechanisms

for cellular division regulation. However, the analysis of minimal cellular structures can

contribute to a better understanding of possible prebiotic scenarios in which cellular life

could have originated (Maynard Smith and Szathmáry, 2001) as well as in the design

and synthesis of new artificial protocells (Rasmussen et al., 2004) .

A first approximation to a minimal cell structure is to consider a simplified

model including the essential membrane physics defined in terms of the average

behavior of a continuous, closed system involving some sort of simple, internal

metabolism. Membrane division can take place spontaneously when membrane size

goes beyond a critical value. In this case, the division process becomes energetically

favored. However, cell division can be also actively induced through different

mechanisms (Noguchi and Takasu, 2002). Understanding how these mechanisms trigger

cell division can be very useful in designing synthetic protocells. Early work in this area



was done by Rashevsky, who mathematically explored the conditions under which a

single cell could experience a process of membrane expansion, deformation and

splitting (Rashevsky, 1960). Given the lack of available computational resources at the

time, the analysis was largely based on mathematical approximations.

An important component of a spatially-extended physically and chemically

consistent model of protocell replication requires a minimal set of rules preserving the

underlying chemistry and physics. In this context, Morgan et al. have developed well-

defined (non-spatial) framework to the growth and division process as a non-stationary

phenomenon (Morgan et al., 2004). In such approximation, the biochemistry is coupled

to a spatially-implicit container, where the effects of cell geometry are introduced by

means of scaling considerations. Some related approximations have been recently used

in relation with the chemoton model (Munteanu and Solé, 2005). However, it would be

also desirable to model cell replication under spatially-explicit conditions. This is

particularly important in order to understand possible internal mechanisms triggering

destabilization of closed membranes. Realistic models involving stochastic particle

models (Ono and Ikegami, 1999) molecular dynamics (or dissipative particle dynamics)

methods are not yet fully developed, and they are rather costly in computational terms

(see Solé et al, 2006 and references therein). In these frameworks, each molecule (or

some simplified representation of it as a particle) is explicitly modeled, with physical

interactions taking place at the microscopic scale. This is especially relevant when

dealing with nano-scale systems, but becomes less needed when dealing with lipid

vesicles. Some current approaches to the synthesis of artificial cells are actually based

on the use of a large vesicle as a container (Walde and Luisi, 2000; Luisi, 2000;



Oberholzer and Luisi, 2002; Hanczyc et al., 2003; Hanczyc and Szostak, 2004; see also

Szostak et al., 2001 for a review and references therein).

Extensive experimental work has been developed using vesicles under a top-

down approach (Luisi, 2002). This approach involves the use of molecules already

present in living cells, including nucleic acids and complex enzymes. Such molecules

would be enclosed within a liposome. The liposome would entrap the chosen molecules

which could, under special conditions (typically unknown a priori) display cell-like

properties. Different types of  reactions, including the polymerase chain reaction

(Oberholzer et al., 1995a)  or the ribosomal synthesis of polypeptides (Oberholzer et al.,

1995b) have been shown to occur inside these compartments. However, although such

experiments indicate that complex chemical reactions can indeed occur within vesicles,

no general framework exists on the potential conditions allowing such

compartmentalized chemistry to trigger cell replication. An important drawback of these

efforts has been the lack of a parallel development of simple theoretical and

computational models able to capture the essential physical and chemical constraints

consistent with cell self-reproduction. Such models would help driving the experimental

design of minimal cells. Here we present a first step in this direction.

Among different possibilities of modeling spatial vesicles, the effects of time-

and space-variable osmotic pressures seems one of the most suitable mechanisms

inducing membrane division, since variable pressures can be generated by the internal

metabolism, without additional external factors. What is required here is an active, non-

equilibrium process able to trigger the growth the protocell. Provided that the interplay

between metabolism and membrane geometric changes are able to trigger a symmetric



deformation, cell division might be spontaneously achieved. In this paper we analyze

how a simple metabolism can create such variable osmotic pressures and how the

membrane becomes deformed under such differential pressures until completing

division. For simplicity we restrict ourselves to a two-dimensional scenario.

METABOLISM AND OSMOTIC PRESSURES

Metabolic reactions:

Several possible implementations of a self-replicating cell can be constructed.

Here we present one of them, leaving a general clarification to a future work. The object

of study is a minimal cellular structure, formed by a closed continuous membrane

enclosing a set of metabolic reactions. In our model, some of these reactions need the

presence of two metabolic centers (enzymes) E1 and E2 adhered to the internal face of

the membrane (see figure 1). This assumption is actually close to those performed by

Rashevsky, although they can be relaxed (Macía and Solé, in preparation). These

elements act as catalysts of these metabolic reactions:
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These enzymes might be specifically designed molecules including several catalytic

centers (two identical molecules in this case).

The substance R is externally provided and available from the external medium.

It is continuously pumped from a source located at the limits of the system, and can

cross the membrane by diffusion, with permeability hR. Similarly, the substance

produced by metabolic reactions diffuses outwards by crossing the membrane with

permeability hG1.

The consumption and production of substances in the metabolic centers

generates different flows, crossing the membrane in the normal direction. These flows

depend on the difference of concentrations at each side of the membrane. Molecules

tend to flow from regions of higher concentration to regions of lower concentration.

Moreover, it is necessary to take into account the total water flow.  The water flow

depends on differential hydrostatic pressures inside and outside the membrane, as well

as on the difference of solute concentrations: water tends to flow from regions of lower

to regions of higher solute concentrations.

Since some of these reactions take place within a finite space domain (where the

metabolic centers E1 and  E2 are located) the distribution of the different substances is

not uniform in the space. These spatially-localized reactions are the origin of non-

uniform osmotic pressures along the membrane. On the other hand, due to these non-

uniform osmotic pressures the membrane can become deformed and the location of the



metabolic centers adhered to the internal side of the membrane can change along time.

The combination of these two effects is the origin of time and space variable pressures.

Furthermore, the membrane grows as a consequence of the continuous insertion of

molecules or aggregates available from an external source, leading to changes in

cellular volume and therefore to changes in concentrations.

All the concentrations are time and space-dependent. For a given molecule j, its

concentration will be cj cj(r,t), with r=(r1,r2) indicating the spatial coordinates. For

notational simplicity, this dependence is not explicitly written. The concentration at

each instant depends on the number of molecules nj and on the volume V. This

dependence can be expressed as:
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• Considering that cj(t)=nj(t)/V(t), equation (2.1) can be written as:

n

j

V

jj

t
V

V
n

t
n

Vdt
dc

∂
∂

−
∂

∂
= ··1

2 (2.2)

• Finally the time evolution of the concentrations in the reaction-diffusion system

coupled with the membrane is given by:
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The first term in the right hand accounts for the change in concentrations

associated to changes in the number of moles nj inside the membrane, assuming

constant volume. This term is described by the reaction-diffusion equations::
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Here DG1 and DR are the diffusion coefficients of G1 and R, respectively. In a

first approximation, the model assumes that the values of these coefficients are the same

inside and outside the membrane. Ro is the constant supply rate of R in the external

medium. Similarly, the second term in (2.3) account for the change in the concentration

due to the volume changes, with a constant number of molecules nj.

The flows crossing the membrane, are described by an additional set of

equations. These equations account for the different interactions between all the

elements of our system: water, solutes, and membrane (Kedem el al. 1958, Patlak et al.

1963, Curry 1984) . The following terms need to be considered:

• Water flow:





















∆−∆= ∑

=

2

1j
jjpw cRTpLJ σ (3.1)

where Lp is the hydraulic conductivity of the water, ∆p is the hydrostatic pressure

difference between the interior and the exterior, R is the ideal gas constant, T is the

temperature, and σj is the solute reflection coefficient for the j-th substance (0 for a

freely permeable solute, and 1 for a completely impermeable solute). Here ∆cj=ce
j-ci

j is

the concentration difference of the j-th substance at both membrane sides (exterior minus

interior). The index j corresponds to the different substances: j=G1, R.

• Solute flows: For dilute solutions, the solute-solute interaction can be no

considered. For each different substance the flow is given by:
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hj is the permeability of the substance j (defined as the rate at which molecules cross the

membrane), and Pj
e is the so called Peclet number, given by:
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The right hand of equation (3.2) is the sum of convective and diffusive components of

solute flow. The first term is the diffusive flow, which depends on the difference of



concentrations. The second term if the convective flow, and accounts for the amount of

solute carried across the membrane by net water flow:.

Cell volume changes due to both net water flow as well as to the growth of the

membrane:

AJ
dt
dV

w= (4.1)

If the composition of the external solution does not change over time, the rate at

which the externally provided compounds are incorporated into the membrane can be

considered proportional to its area:

A
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where Td is the time  taken for the membrane to double its area.

Osmotic pressures, surface tension and bending elasticity:

The set of equations (2.1-4.2) describes the dynamics of the system. To

explicitly model  the membrane shape evolution, it is necessary to consider the effect of

the different flows, in terms of local pressure, at each point of the membrane. The flows

of the different substances generate different osmotic pressures. At each point the

osmotic pressure value Po
j generated by the substance j depends on the different

concentrations of this substance at each side of the membrane:
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where kj is constant. For the particular case of very low concentrations, we have kx≈

R·T, where R is the ideal gas constant and T is the temperature (if the concentrations are

expressed in mols/liter). For many solutes, the osmotic pressure is not proportional to

their concentrations. In these cases the osmotic pressure is empirically fitted to a

polynomial function of the concentration. Thus, equation (5) is an approximation for

small solutes.

The osmotic pressure at one point r of the membrane at time t can be calculated

by adding the pressure generated by each substance, as follows:
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Finally it is necessary take into account the contribution of the surface tension

and the bending elasticity to the total pressure. This contribution is described by the

following expression:
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where γ is the surface tension coefficient, and κ is the elastic bending coefficient.

Equation (7) is valid only for a 2D model. However, a more detailed model, taking into

account the chemical composition of the membrane, needs a more precise estimation for



γ (White 1980). Here Rs(r) is the local radius of curvature. This value is given by the

radius of the circumference with the best fit to the real membrane curvature in a local

environment of the point r. Finally ro is the spontaneous radius of curvature.

SIMULATION MODEL

 In this section we present and analyze the reaction-diffusion system coupled

with membrane shape evolution. There are different methods to study the evolution of

the membrane shape under different conditions, such as the so called Phase Field

Method (Du et al. 2005 and references therein). In general these methods are based on

the assumption of global constrains, i.e. the minimization of the elastic bending energy.

One of the goals of this paper is to introduce a method to track membrane surface

without any assumption a priori on of global conditions. Our method only takes into

account the local effects of the different pressures acting at each point. As will be shown

below, by considering these local effects, the expected minimization of the elastic

bending energy emerges. On the other hand, a second goal is to analyze if a non-

uniform pressure distribution along the membrane is enough for a controlled membrane

deformation to occur, until complete division takes place. The rules defining our model

are presented below.

The reaction-diffusion system



The reaction-diffusion system described by equations (1.1-1.2) can be calculated by

using a discrete approximation using both discrete time and space (Schaff et al., 2001,

Wiemar et al., 1994, Patankar, 1980). With such model it is possible to properly model

the membrane behavior. Figure 2a indicates how this discrete approximation can be

performed. The available space is divided into discrete elements of area dS=dx·dy. Each

discrete element is identified by its column and row (i,j). There are tree types of

elements:

• Discrete internal elements, which cover all the area inside the membrane.

• Discrete external elements, which cover all the external area.

• Discrete membrane elements, which cover the membrane.

To construct the discrete approximation to the real membrane, the membrane

elements must be in contact with both internal and external elements, and all the

elements must define a closed system. Not all the elements in contact with the

membrane can be employed in this membrane approximation since they can be in

contact only with one of the internal or external elements, but not to both.

To perform the calculations, it is useful to separate the concentrations: for a discrete

internal element located at the site (i,j) at time t, the concentration of the j-th substance is

indicated as i
j(i,j,t) and for an external element is indicated as e

j(i,j,t). These are the

concentration values used in the finite differences approximation for equations (2.1-

2.5). Depending on the discrete elements, the concentrations values must be:



• Discrete internal elements: e
x=0 y i

x≠0

• Discrete external elements: e
x≠0 y i

x=0

• Discrete membrane elements: e
x≠0 y i

x≠0

Membrane shape characterization

This model assumes that the membrane is a closed and continuous boundary. To

track the membrane shape evolution coupled with the metabolism described by

equations (1.1-1.2) it is necessary to define a set of characteristic points Qk along the

membrane. The shape of the membrane at each time is determined by the spatial

position of these points. The shape of the membrane between two neighboring

characteristic points can be obtained from a linear interpolation. To make a correct

choice of these characteristic points it is necessary to take one point in each discrete

membrane element (figure 2). Initially the characteristic point for each discrete

membrane element is chosen in the middle of the segment that crosses the discrete

membrane element.

Flow terms



Using our discrete approximation to the membrane structure, instead to a ideal

continuous membrane, we need to introduce some corrections in the calculation of

discrete flows. First, we need to determine the normal direction to the membrane at each

discrete membrane element. The normal direction associated to the membrane element

(i,j) is defined by the angle Φ(i,j) between the normal to the ideal membrane at the

characteristic point and the horizontal axis (see figure 2a.).

When the calculations are performed on a discrete lattice, due to the diffusion

process each element exchanges molecules with just its nearest neighbors, as figure 2b

shows. Let us indicate as g(i,j)-(l,m) the exchanged flow between elements (i,j) and (l,m) if

both are internal or external elements. If the element (i,j) belongs to a discrete

membrane element, the exchanged flow is g(i,j)-(l,m)·A(i,j)-(l,m) with (Schaff et al., 2001):

In this situation, the estimated flows across the membrane need to be corrected using

(8).

Membrane Deformation

In the discrete approximation, at each characteristic point Qk the difference of

concentrations between both sides is the difference of concentrations i
j

e
j, for the
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substance j, associated to the discrete membrane element containing the characteristic

point. This difference of concentrations at both sides creates an osmotic pressure. Under

certain conditions these pressures are enough to deform the membrane. To simulate this

effect it is necessary to assume that each characteristic point can change its position

under influence of these pressures. In a first approximation, the displacement of each

point is proportional to the total pressure described by (7).

),(·)()( ktotalkk QtPbtQttQ +=∆+ (9)

with b being a constant and ∆t the discrete time interval used in the  computation. The

value of b cannot be arbitrary (see the results section for more details). With the new

locations of Qk it is possible to generate the new shape of the membrane using a linear

interpolation. Once this process is completed, it is necessary to define which discrete

elements are internal, external or membrane elements again.

 The membrane growth is described by equation (4.2). This growth must be

enough to guarantee that the membrane remains closed all the time. The membrane size

defined by the characteristic points locations must agree with the size predicted by (4.2).

RESULTS



Taking into account the previous local effects, the global behaviour of the

membrane should correctly described. To test the validity of the results provided by the

rules of the model, different analysis have been performed. In the following sub-

sections, we study three key features of out protocell model, namely:

(a) the time changes of membrane shape

(b) the volume growth under non equilibrium conditions

(c) the process of cell division.

These three aspects of the model capture the essential features of the underlying physics

and chemistry and allow testing the realiability of the model predictions.

Free membrane evolution.

A first simple test of the correctness of our approach is given by the analysis of

the membrane relaxation dynamics. Some methods for membrane shape evolution, such

as the Phase Field Method, are based in the physical principle of energy minimization.

The surface must evolve freely towards shape configurations of minimal elastic bending

energy. This energy is given by (Du et al.2005):
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where a1 is the surface tension, a2 is the bending rigidity, a3 is the stretching rigidity,

and c0 is the spontaneous curvature. H is the mean curvature and G is the Gaussian

curvature. The integral is over the entire membrane surface Γ.

In our method global conditions on energy minimization are not imposed a priori.

However, to be physically coherent, this global behaviour must emerge from the local

rules describing the model. In particular, we should expect to observe a predictable

shape change, starting from an arbitrary initial state, converging towards a circular

configuration. Figure 3 shows the evolution of the elastic bending energy through time.

Starting from an arbitrary shape, the membrane shape relaxes towards configurations of

minimal energy.

Volume growth and coefficient of displacement estimation.

Consider a membrane with spherical symmetry in osmotic equilibrium with its

surrounding medium. If the external concentration decays rapidly, this produces a

difference in the osmotic pressures between the internal and external medium, and the

water flows inwards (the membrane is impermeable to the solutes). This water flow

produces an increase of the membrane volume given by:

pL
dt
dV

A p∆=
1

(11)



where A is the membrane area, Lp is the hydraulic conductivity and ∆p is the osmotic

pressure difference. As the cell volume increases as a consequence of the water flow,

the membrane area increases too. Let us assume that the increase in area is only due the

elastic expansion (i.e. no new molecules or aggregates are incorporated to the

membrane). Using the spherical symmetry, from (11) the increase in the membrane area

can be approximated by (Wolfe et al. 1986):

with AF the final area, AI the initial area, and τ=(AF-AI)/8πLpRI. Here, RI is the initial

radius value.

In order to test our method, the simulation starts with a spherical membrane,

with a radius of 8 µm, in equilibrium with its surrounding medium. The internal

concentration is  0.1 mol/l. When external concentration decreases rapidly to 0.07 mol/l

the water flows inwards the membrane to equilibrate the chemical potentials (values of

hydraulic conductivity, surface tension and elastic coefficient from table I). During all

the process the spherical symmetry remains. Figure 4 show the results obtained by

numerical simulation using our method, compared with the analytic result obtained by

equation (12). This simulations have been performed with different values of the

displacement coefficient b (see equation 9). The best fit is obtained with b=1.57·10-13

cm·Pa-1 with the parameters employed.

These results suggest that the local rules defining our method capture the

essential physics of membrane deformations.

τ
t

IFF eAAAtA
−

−−≈ )·()( (12)



Our simulations show that, under certain conditions, osmotic pressures can

deform and in some cases eventually split the membrane. The osmotic pressure values

of a given substance depend on the different concentrations at each side of the

membrane. These different concentrations basically depend on two parameters: the

permeability and the different values of the diffusion coefficient inside and outside the

membrane. In these simulations the diffusion coefficient is the same in both sides,

therefore the permeability becomes the fundamental parameter.

Table 1 shows the parameter values used in the simulations. These have been

performed on a 128x128 discrete, square lattice. Initially, the metabolic centers E1 and

E2 are attached to the membrane in two opposite locations. G1 is produced in both

metabolic centers and diffuses through the membrane pushing it outwards. Moreover, R

comes form the external medium and pushes the membrane inwards.

Figure 5 shows the pressure distributions along the membrane at different time

steps of the evolution of the membrane-metabolism system. The pressures associated to

G1 favors membrane expansion where they are higher. This occurs where E1 and E2 are

located. Figure 6 shows the concentration profiles of G1 inside the membrane. When the

narrowing is enough, two independent membranes enter into contact. This qualitative

change depends on the distance between the characteristic points in the narrowed zone

(see Appendix I).

During the expansion-narrowing process, the membrane size necessary to ensure

that the cell boundary is continuous and closed increases. Such increase is due the



incorporation of externally provided molecules, following equation (4.2).  Figure 7

shows the good fitting between the required size needed to close the membrane along

the characteristic points and the real size of the membrane, as calculated from (4.2).

DISCUSSION

One of the greatest challenges of synthetic biology is the construction of simple

protocells able to self-reproduce themselves. Efforts in this direction have used

liposomes as the containers and special reactions that have been shown to occur inside

such vesicles. Although the feasibility of such reactions is a very positive result, these

bioreactors have failed so far to display self-reproduction. Only in one case (Oberholzer

et al., 1995c) molecular self-replication was shown to be coupled to the whole vesicle

reproduction. A systems approach might help understanding the potential scenarios

allowing minimal synthetic cells to undergo a cell cycle. This requires both a simple,

physico-chemically feasible design as well as an appropriate computational

implementation.

We have presented a minimal cellular model formed by a continuous closed

membrane with a simple, enzyme-driven internal metabolism. It has been shown that

the effect of variable osmotic pressures, under certain conditions, can be a regulatory

mechanism for the division process. These osmotic pressures are generated by the

internal cellular metabolism, consistently with some old theoretical predictions

(Rashevsky, 1960). The behavior of the membrane under the active metabolism is



driven by variable osmotic pressures which can be very relevant to the synthesis of

artificial protocells, as well as in understanding some prebiotic scenarios, where the

sophisticated division mechanisms of the current cells were not present. In this context,

the set of reactions defining the internal metabolism can be arbitrarily generalized, thus

opening the door for many different types of membrane-metabolism couplings.

The metabolism analyzed need two metabolic centers E1 and  E2 linked to the

internal side of the membrane. This can be achieved using transmembrane proteins with

the appropriate reaction centers able to catalyze several reactions simultaneously (two in

our example).  After cellular division, each daughter cell has only one metabolic center.

At this point, the division process cannot start again without the replication of the

metabolic center. This is a limitation as far as it would be desirable that protocells keep

reproducing indefinitely. However, our simulations suggest that a metabolism where the

non-uniform concentration distribution arise form a spatiotemporal pattern (as in Turing

patterns) without specifically located metabolic centers could be an efficient self-

replication mechanism for minimal cells. Moreover, our results and design are

compatible with available understanding on molecular reactions and vesicle dynamics.

The parameters used in our implementation as well as the predicted behavior are

consistent with physically and chemically reasonable limits, providing support for our

design as a feasible model of minimal protocell.
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APPENDIX I: Membrane division

A final rule is required to effectively generate a separation between two daughter

cells. Since the membrane is actually a continuous medium, this model could not allow

the total break of the membrane into two independent closed membranes unless some

additional change is introduced. The membrane split into two independent membranes

is a singularity. This singularity can be easily introduced in the simulations (Appendix

I).

 After a deformation process, the new membrane shape is determined by

interpolating between the different characteristic points of the membrane. This

interpolation is performed in a clockwise direction. Given one characteristic point Qk all

the others points Qm have a set of associated weight values. These weight values are

calculated by using a distribution:
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where dQkQm is the distance between both points. This function has a behavior similar to

Lennard-Jones potential, frequently employed to describe the boundary between lipids

in a membrane. Figure A.1 shows the weight profile used here. Given one characteristic

point Qk the interpolation will be performed between this point and the point Qm with

higher value of W(dQkQm) in the clockwise direction. Figures A.2a and A.2b show how

this process can take place. In the figure 4a, with a spheroid shape, the interpolation

process starts at the characteristic point labeled Qi (this initial point is arbitrary). The

next point with higher weight value, in the clockwise direction, is Qi+1, so the



interpolation between Qi and  Qi+1 will be performed. The next interpolation will be

between Qi+1 and  Qi+2, and so on. Figure A.2b shows a membrane with a very high

deformation. In the narrow neck zone the interpolation between Qi and  Qi+1 will be

performed, but from Qi+1 the interpolation is possible with the point labeled Qi+2 or with

the point labeled Q i+2, depending if W(dQi+1,Qi+2)>W(dQi+1,Q i+2) or

W(dQi+1,Qi+2)<W(dQi+1,Q i+2). If the interpolation is between Qi+1  and Qi+2  the simulation

works with one deformed membrane, but if the interpolation is between Qi+1  and Q i+2

the simulation assumes two closed membranes, one in the top half and other in the

bottom half, in contact.

This is a qualitative rule in order to impose membrane splitting. Without this rule the

membrane behaviour is the same but the final splitting cannot take place due the

continuous nature of the membrane assumed in this model.
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FIGURE CAPTIONS

Figure  1. Schematic representation of the minimal cell. The structure is formed by a

closed continuous membrane. Adhered to the internal side of the membrane there are

two enzymes E1 and  E2. These enzymes are the catalyst of a part of the metabolic

reactions. When a molecule of R is in contact with E1 this molecule breaks into a pair of

molecules G1,  S1. The same occurs when R is in contact with E2. In this case R is

broken into G2 and  S2.  G1 and  G2 produce G0.  G0 and R produce G 0. Finally, the L-

molecules are the precursors of the membrane building blocks M, being transformed in

presence of E1 and E2.

Figure 2 (a) Space discretization for the lattice model. The grid is formed by squares

with a unit surface dS=dx·dy. There are tree types of squares or discrete elements:

internal elements, covering the internal space surrounded by the membrane, external

elements for the area outside the membrane and membrane discrete elements. In (b) we

indicate as  g(k,q)-(l,m) the specific flow exchanged between elements (k,q) and (l,m),

where the index (l,m) corresponds to different elements around (k,q). When in the

neighborhood there are discrete membrane elements this values of flow g(k,q)-(l,m) must

be corrected, because the flow which arrives to the discrete membrane elements do it

along the normal direction defined by the angle Φ(k,q)

Figure 3. Time evolution of a model membrane due the effects of the local pressure at

each point of the membrane. The simulation starts with a membrane with an arbitrary

shape (I) and evolves freely. There are no solutes in the medium, and the shape changes



are due only to the water flow, surface tension, and the membrane elasticity. In this

simulation changes in membrane area are due only to its the elasticity, and there no new

molecules are added to the membrane. Pictures II, III, and IV show the changing

membrane shape at different times. Parameters values from table I but with Ro=0.

Figure 4. Changes in membrane area due to the effect of different solute concentrations

inside and outside the membrane. The continuous line indicates the evolution as

calculated from equation (12). The symbols (l) are the numerical results of our

simulation method. α=Lp·Pf/Rf where Lp is the hydraulic conductivity, Pf is the final

osmotic pressure and Rf is the radius of the membrane at the end.

Figure 5. Spatial pressure distribution along the membrane in different times of the

simulation. The figures show zones of expansive (positive) and zones of compressive

(negative) pressure. This pressure distribution is a consequence of the spatial

localization of the metabolic centers and the effects of membrane deformations

occurring in these locations. The smaller pictures indicate the membrane shape in each

case.

Figure 6. Spatiotemporal dynamics of the membrane-metabolism model. The expansion

process takes place basically around the metabolic centers E1 and  E2 due the osmotic

pressure generated by G1. Conversely, in the middle zone the effect of the osmotic

pressure associated to R is dominant, and creates a narrowing effect. The plane XY

represents the space (as described by our lattice, discrete approximation). The vertical



axis represents the concentration of G1. The maxim is located around the two enzymes

(metabolic centers) E1 and E2.

Figure 7. Exponential growth of membrane size. The symbols (l) indicate the

membrane size needed to guarantee a closed, continuous membrane passing through all

the characteristic points, which define the membrane shape (see text). The continuous

line corresponds to the growth of a membrane from externally available precursors,

which are incorporated to the membrane as described by equation (4.2). Td is the time

needed to double the membrane area.

Figure A.1. Weight distribution between two membrane characteristic points plotted

against their relative distance. This profile is similar to the so-called Lennard-Jones

potential.

Figure A.2. (a) Membrane with a spheroid shape. The interpolation process starts at the

characteristic point labeled A (this initial point it is arbitrary). The next point with

higher weight value, in the clockwise direction, is B, so the interpolation between A and

B will be performed. The next interpolation will be between B and C, and so on. (b)

Here we show a membrane with a very high deformation. In the narrow neck zone there

are two possibilities: the interpolation can be performed between B and C, if

W(dBC)>W(dBC ), or between B and C  if W(dBC)<W(dBC ). In the first case there is only

one deformed membrane. In the second case two membranes are in contact.



Table 1. Parameter values for the rates of metabolic reactions and membrane

deformations used in the simulations displayed in figure 6. The proportionality constant

kj for osmotic pressures in equation (6) is the same for all substances.
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Table 1.

Parameter Symbol Value

Kinetic constant k1 0.7 M-1·s-1

“ k2 0.7 M-1·s-1

Permeability hR 10-8 cm·s-1

“ hG1 8·10-8 cm·s-1

Hydraulic conductivity Lp 4.1·10-11 cm.Pa-1·s-1

Diffusion coefficient DR 1.6·10-8 cm2·s-1

“ DG1 3·10-8 cm2·s-1

Displacement

proportionality constant
b 1.57·10-13 cm·Pa-1

Substance contribution Ro 1 mol·l-1

Surface Tension

Coefficient
γ 2.98 Pa·cm

Elastic bending

coefficient
k 1.34·10-19 Pa·cm3

Spontaneous radius of

curvature
ro 7 µm

Temperature T 273 K


