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Abstract

The classic algorithms of Needleman–Wunsch and Smith–Waterman
find a maximum a posteriori probability alignment for a pair hidden
Markov model (PHMM). In order to process large genomes that have
undergone complex genome rearrangements, almost all existing whole
genome alignment methods apply fast heuristics to divide genomes into
small pieces which are suitable for Needleman–Wunsch alignment. In
these alignment methods, it is standard practice to fix the parameters
and to produce a single alignment for subsequent analysis by biologists.

As the number of alignment programs applied on a whole genome
scale continues to increase, so does the disagreement in their results. The
alignments produced by different programs vary greatly, especially in non-
coding regions of eukaryotic genomes where the biologically correct align-
ment is hard to find. Parametric alignment is one possible remedy. This
methodology resolves the issue of robustness to changes in parameters by
finding all optimal alignments for all possible parameters in a PHMM.

Our main result is the construction of a whole genome parametric
alignment of Drosophila melanogaster and Drosophila pseudoobscura. This
alignment draws on existing heuristics for dividing whole genomes into
small pieces for alignment, and it relies on advances we have made in com-
puting convex polytopes that allow us to parametrically align non-coding
regions using biologically realistic models. We demonstrate the utility
of our parametric alignment for biological inference by showing that cis-
regulatory elements are more conserved between Drosophila melanogaster

and Drosophila pseudoobscura than previously thought. We also show how
whole genome parametric alignment can be used to quantitatively assess
the dependence of branch length estimates on alignment parameters.

The alignment polytopes, software, and supplementary material can
be downloaded at http://bio.math.berkeley.edu/parametric/ .
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1 Introduction

Needleman–Wunsch pairwise sequence alignment [1] is known to be sensitive
to parameter choices. To illustrate the problem, consider the 8th intron of the
Drosophila melanogaster CG9935-RA gene (as annotated by FlyBase [2]) lo-
cated on chr4:660,462-660,522 (April 2004 BDGP release 4). This intron, which
is 61 base pairs long, has a 60 base pair ortholog in Drosophila pseudoobscura.
The ortholog is located at Contig8094 Contig5509:4,876-4,935 in the August
2003, freeze 1 assembly, as produced by the Baylor Genome Sequencing Center.

Using the basic 3-parameter scoring scheme (match M , mismatch X and
space penalty S), these two orthologous introns have the following optimal align-
ment when the parameters are set to M = 5, X = −5 and S = −5:

mel GTAAGTTTGTTTAT-ATTTTTTTTTTTTTGAAGTGA-CAAATAGC-A-CTTATAAATATACTTAG

pse GTTCGTTAACACATGAAATTCCATCGCCTGAT-TGTTCA-CTATCTAACTAACGAAT-T--TTAG

** *** ** * ** * *** ** ** ** * * ** * *** * ****

However, if we change the parameters to M = 5, X = −6 and S = −4, then
the following alignment is optimal:

mel GTAAGTT------TGTTTATATTTTTTTT--T--TT-TTGAAGTGA-CAAATAGCACTTATA--A

pse GTTCGTTAACACATG-A-A-ATTCCATCGCCTGATTGTT-CACT-ATC---TA--AC-TA-ACGA

** *** ** * *** * * ** ** * * * * ** ** ** * *

mel ATATACTTAG

pse AT-T--TTAG

** * ****

Note that a relatively small change in the parameters produces a very different
alignment of the introns. This problem is exacerbated with more complex scor-
ing schemes, and is a central issue with whole genome alignments produced by
programs such as MAVID [3] or BLASTZ/MULTIZ [4]. Indeed, although whole
genome alignment systems use many heuristics for rapidly identifying alignable
regions and subsequently aligning them, they all rely on the Needleman–Wunsch
algorithm at some level. Dependence on parameters becomes an even more cru-
cial issue in the multiple alignment of more than two sequences.

Parametric alignment was introduced by Waterman, Eggert and Lander [5]
and further developed by Gusfield et al. [6, 7] and Fernandez-Baca et al. [8] as an
approach for overcoming the difficulties in selecting parameters for Needleman–
Wunsch alignment. See [9] for a review and [10, 11] for an algebraic perspective.
Parametric alignment amounts to partitioning the space of parameters into re-
gions. Parameters in the same region lead to the same optimal alignments.
Enumerating all regions is a non-trivial problem of computational geometry.
We solve this problem on a whole genome scale for up to five free paramaters.

Our approach to parametric alignment rests on the idea that the score of an
alignment is specified by a short list of numbers derived from the alignment. For
instance, given the standard 3-parameter scoring scheme, we summarize each
alignment by the number m of matches, the number x of mismatches, and the
number s of spaces in the alignment. The triple (m,x, s) is called the alignment
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alignment summary number of alignments with that summary
A (25, 35, 1) 5
B (28, 31, 3) 15
C (32, 25, 7) 44
D (33, 23, 9) 78
E (34, 20, 13) 156
F (36, 10, 29) 8064

Table 1: The 8362 optimal alignments for two Drosophila intron sequences.

summary. As an example consider the above pair of orthologous Drosophila
introns. The first (shorter) alignment has the alignment summary (33, 23, 9)
while the second (longer) alignment has the alignment summary (36, 10, 29).

Remarkably, even though the number of all alignments of two sequences is
very large, the number of alignment summaries that arise from Needleman–
Wunsch alignment is very small. Specifically, in the example above, where the
two sequences have lengths 61 and 60, the total number of alignments is

1,511,912,317,060,120,757,519,610,968,109,962,170,434,175,129 ≃ 1.5 × 1046.

There are only 13 alignment summaries that have the highest score for some
choice of parameters M,X, S. For biologically reasonable choices, i.e., when we
require M > X and 2S < X , only six of the 13 summaries are optimal. These
six summaries account for a total of 8362 optimal alignments (Table 1).

Note that the basic model discussed above has only d = 2 free parameters,
because for a pair of sequences of lengths l, l′ all the summaries (m,x, s) satisfy

2m+ 2x+ s = ℓ+ ℓ′. (1)

This relation holds with ℓ+ ℓ′ = 121 for the six summaries in Table 1. Figure 1
shows the alignment polygon, as defined in Section 2.3, in the coordinates (x, s).
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Figure 1: The alignment polygon for our two introns is shown on the left. For
each of the alignment summaries A,B, . . . ,F in Table 1, the corresponding cone
in the alignment fan is shown on the right. If the parameters (S,X) stay inside
a particular cone, every optimal alignment has the same alignment summary.
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In general, for two DNA sequences of lengths ℓ and ℓ′, the number of optimal
alignment summaries is bounded from above by a polynomial in ℓ+ ℓ′ of degree
d(d−1)/(d+1), where d is the number of free parameters in the model [9, 10]. For
d = 2, this degree is 0.667, and so the number of optimal alignment summaries
has sublinear growth relative to the sequence lengths. Even for d = 5, the growth
exponent d(d− 1)/(d+1) is only 3.333. This means that all optimal alignment
summaries can be computed on a large scale for models with few parameters.

The growth exponent d(d− 1)/(d+ 1) was derived by Gusfield et al. [6] for
d = 2 and by Fernandez-Baca at al. [8] and Pachter–Sturmfels [10] for general d.
Table 1 can be computed using the software XPARAL [7]. This software works
for d = 2 and d = 3, and it generates a representation of all optimal alignments
with respect to all reasonable choices of parameters. Although XPARAL has a
convenient graphical interface, it seems that this program has not been widely
used by biologists, perhaps because it is not designed for high throughput data
analysis and the number of free parameters is restricted to d ≤ 3.

In this paper we demonstrate that parametric sequence alignment can be
made practical on the whole-genome scale, and we argue that computing output
such as Table 1 can be very useful for comparative genomics applications where
reliable alignments are essential. To this end, we introduce a mathematical
point of view, based on the organizing principle of convexity, that was absent
in the earlier studies [5, 6, 9]. Our advances rely on new algorithms, which are
quite different from what is implemented in XPARAL, and which perform well
in practice, even if the number d of free parameters is greater than three.

Convexity is the organizing principle that reveals the needles in the haystack.
In our example, the “haystack” consists of more than 1046 alignments, and the
“needles” are the 8362 optimal alignments. The summaries of the optimal align-
ments are the vertices of the alignment polytope. The alignment polytope is the
convex hull of the summaries of all (exponentially many) alignments. Back-
ground on convex hulls and how to compute the alignment polytopes are pro-
vided in Section 2; see also [11, §2.2]. Thus, parametric alignment of two DNA
sequences relative to some chosen PHMM means constructing the alignment
polytope of the two sequences. The dimension of the alignment polytope is d,
the number of free model parameters. For d = 2 (the basic model), the polytope
is a convex polygon, as shown in Figure 1 for the pair of introns above.

The basic model is insufficient for genomics applications. More realistic
PHMMs for sequence alignment include gap penalties. We consider three such
models. The symmetries of the scoring matrices for these models are derived
from those of the evolutionary models known as Jukes–Cantor (d = 3), Kimura-
2 (d = 4) and Kimura-3 (d = 5). The models are reviewed in Section 2.2.

Our contribution is the construction of a whole genome parametric alignment
in all four models for Drosophila melanogaster and Drosophila pseudoobscura.
Our methods and computational results are described in Section 2. Three bio-
logical applications are presented in Section 3. A discussion follows in Section 4.
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2 From Genomes to Polytopes

The data we analyzed are the genome sequences of Drosophila melanogaster
(April 2004 BDGP release 4) and Drosophila pseudoobscura (August 2003 freeze
1). Our main computational result is the construction of a whole genome para-
metric alignment for these two genomes. This result depended on a number of
innovations. By adapting existing orthology mapping methods, we were able to
divide the genomes into 1,999,817 pairs of reliably orthologous segments, and
among these we identified 877,982 pairs for which the alignment is uncertain.
We computed the alignment polytopes of dimensions two, three and four for each
of these 877,982 sequence pairs, and of dimension five for a subset of them. The
methods are explained in Section 2.3. The vertices of these polytopes represent
the optimal alignment summaries and the robustness cones. These concepts are
introduced in Section 2.2. Computational results are presented in Section 2.4.

2.1 Orthology Mapping

The orthology mapping problem for a pair of genomes is to identify all orthol-
ogous segments between the two genomes. These orthologous segments, if se-
lected so as not to contain genome rearrangements, can then be globally aligned
to each other. This strategy is frequently used for whole genome alignment
[12, 13], and we adapted it for our parametric alignment computation.

MERCATOR is an orthology mapping program suitable for multiple genomes
that was developed by Dewey et al. [14]. We applied this program to the
D. melanogaster and D. pseudoobscura genomes in order to identify pieces for
parametric alignment. The MERCATOR strategy for identifying orthologous
segments is as follows. Exon annotations in each genome are translated into
amino acid sequences and then compared to each other using BLAT [15]. The
annotations are based on reference gene sets, such as FlyBase genes [2], and on
ab initio predictions. The resulting exon hits are then used to build a graph
whose vertices correspond to exons, and with an edge between two exons if there
is a good hit. A greedy algorithm is then used to select edges in the graph that
correspond to runs of exons that are consistent in order and orientation.

The MERCATOR orthology map for D. melanogaster and D. pseudoobscura
has 2,731 segments. However, in order to obtain a map suitable for parametric
alignment, further subdivision of the segments was necessary. This subdivision
was accomplished by the additional step of identifying and fixing exact matches
of length at least 10bp. We did this using the software MUMMER; see [16].

We derived 1,116,792 constraints, which are of four possible types:

• exact matching non-coding sequences,

• ungapped high scoring aligned coding sequences,

• segment pairs between two other constraints where one of the segments
has length zero, so the non-trivial segment must be gapped, and

• single nucleotide mismatches that are squeezed between other constraints.
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We then removed all segments where the sequences contained the letter N (which
means the actual sequence is uncertain). This process resulted in 877,982 pairs
of segments for parametric alignment. The lengths of the D. melanogaster seg-
ments range from 1 to 80,676 base pairs. The median length is 42bp and the
mean length is 99bp. In all, 90.4% of the Drosophila melanogaster genome and
88.7% of the Drosophila pseudoobscura genome were aligned by our method.

2.2 Models, Alignment Summaries, and Robustness Cones

For each of the 877,982 pairs of orthologous segments, we constructed all optimal
Needleman–Wunsch alignments, with respect to various scoring schemes which
are derived from pair hidden Markov models (PHMMs). We considered models
with 2,3,4, and 5 parameters. See [17, §4.1] for a review of PHMMs and their
relationship to the scoring schemes typically used for aligning DNA sequences.
In what follows, we only refer to the scores, which are the logarithms of certain
ratios of the parameters of the PHMM. Our four models are specializations of the
general 33 parameter model [11, §2.2] that incorporates mutations, insertions,
and deletions of DNA sequences. It is customary to reduce the dimension by
assuming that many of the 33 parameters are equal to each other.

The basic model, discussed in Section 1, has three natural parameters, namely,
M for match, X for mismatch and S for space. If the numbers M, X and S
are fixed, then we seek to maximize M ·m + X · x + S · s, where (m,x, s) runs
over the summaries of all alignments. In light of the relation (1), this model has
only two free parameters and there is no loss of generality in assuming that the
match score M is zero. From now on we set M = 0 and we take X and S as
the free parameters. We define the 2d alignment summary to be the pair (x, s).

Following the convention of [11, §2.2], we summarize a scoring scheme with
a 5 × 5-matrix w whose rows and columns are both indexed by A, C, G, T, and
-. The matrix w for the basic model is the leftmost matrix in Table 2, and it
corresponds to the Jukes–Cantor model of DNA sequence evolution.

Our 3d model is the most commonly used scoring scheme for computing
alignments. This model includes the number g of gaps. A gap is a complete
block of spaces in one of the aligned sequences; it either begins at the start
of the sequence or is immediately preceded by a nucleotide, and either follows
the end of the sequence or is succeeded by a nucleotide. The 3d alignment
summary is the triple (x, s, g). The score for a gap, G, is known as the affine
gap penalty. If X, S and G are fixed, then the alignment problem is to maximize
X · x+ S · s+G · g where (x, s, g) runs over all 3d alignment summaries. The
parametric version is implemented in XPARAL. Introducing the gap score G
does not affect the matrix w which is still the leftmost matrix in Table 2.

Our 4d model is derived from the Kimura-2 model of sequence evolution.
The 4d alignment summary is the vector (x, y, s, g) where s and g are as above,
x is the number of transversion mismatches (between a purine and a pyrimidine
or vice versa) and y is the number of transition mismatches (between purines
or between pyrimidines). The four parameters are X , Y , S, and G. The matrix
w of scores, as specified in [11, (2.11)], is now the middle matrix in Table 2.
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0 X X X S
X 0 X X S
X X 0 X S
X X X 0 S
S S S S
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0 X Y X S
X 0 X Y S
Y X 0 X S
X Y X 0 S
S S S S
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0 X Y Z S
X 0 Z Y S
Y Z 0 X S
Z Y X 0 S
S S S S













Table 2: The Jukes–Cantor matrix, the Kimura-2 matrix, and the Kimura-3 ma-
trix. These three matrices correspond to JC69, K80 and K81 in the Felsenstein
hierarchy [11, Figure 4.7] of probabilistic models for DNA sequence evolution.

Our 5d scoring scheme is derived from the Kimura-3 model. Here the ma-
trix w is the rightmost matrix in Table 2. The 5d alignment summary is the
vector (x, y, z, s, g), where s counts spaces, g counts gaps, x is the number of
mismatches A

C
, C

A
, G

T
or T

G
, y is the number of mismatches A

G
, G

A
, C

T
or T

C
, and

z is the number of mismatches A

T
, T

A
, C

G
or G

C
. Thus, the 5d alignment sum-

maries of the two Drosophila intron alignments at the beginning of Section 1
are (4, 10, 9, 9, 8) and (3, 3, 4, 29, 17). Even the 5d model does not encompass
all scoring schemes that are used in practice. See Section 3.1 for a discussion of
the BLASTZ scoring matrix [18] and its proximity to the Kimura-2 model.

Suppose we are given a specific alignment of two DNA sequences. Then
the robustness cone of that alignment is the set of all parameter vectors that
have the following property: any other alignment that has a different alignment
summary is given a lower score. As a mathematical object, the robustness cone
is an open convex polyhedral cone in the space R

d of free parameters.
An alignment summary is said to be optimal, relative to one of our four mod-

els, if its robustness cone is not empty. Equivalently, an alignment summary is
optimal if there exists a choice of parameters such that the Needleman–Wunsch
algorithm produces only that alignment summary. Such a parameter choice will
be robust, in the sense that if we make a small enough change in the parameters
then the optimal alignment summary will remain unchanged. Each robustness
cone is specified by a finite list of linear inequalities in the model parameters.

For example, consider the first alignment in the Introduction. Its 2d align-
ment summary is the pair (x, s) = (23, 9), labeled D in Table 1. The robustness
cone of this summary is the set of all points (X,S) such that the score 23X+9S
is larger than the score of all other alignments summaries other than (23, 9).
This cone is specified by the two linear inequalities S > X and 4S < 3X .

If we fix two DNA sequences, then the robustness cones of all the optimal
alignments define a partition of the parameter space, Rd. That partition is called
the alignment fan of the two DNA sequences. Figure 1 shows the (biologically
relevant part of the) alignment fan of two Drosophila introns in the 2d model.
While this alignment fan has only 13 robustness cones, the alignment fan of the
same introns has 76 cones for the 3d model, 932 cones for the 4d model, and
10,009 cones for the 5d model. These are the vertex numbers in Table 5.
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2.3 Alignment Polytopes

The convex hull of a finite set S of points in R
d is the smallest convex set

containing these points. It is denoted conv(S) and called a convex polytope.
There exists a unique smallest subset V ⊆ S for which conv(S) = conv(V).
The points in V are called the vertices of the convex polytope. The vertices
lie in higher-dimensional faces on the boundary of the polytope. Faces include
edges, which are one-dimensional, and facets, which are (d − 1)-dimensional.
Introductions to these concepts can be found in the textbooks [19, 20]. By
computing the convex hull of a finite set S ⊂ R

d we mean identifying the vertices
and the facets of conv(S) and, if possible, all faces of all dimensions.

Fix one of the four models discussed in Section 2.2. The alignment polytope
of two DNA sequences is the convex polytope conv(S) ⊂ R

d, where S is the set of
alignment summaries of all alignments of these two sequences. For instance, the
3d alignment polytope of two DNA sequences is the convex polytope in R

3 that
is formed by taking the convex hull of all alignment summaries (x, s, g). Figure
2 shows the 3d alignment polytope for the two sequences in the Introduction.
Its projection onto the (x, s)-plane is the polygon depicted in Figure 1.

It is a basic fact of convexity that the maximum of a linear function over
a polytope is attained at a vertex. Thus, an alignment of two DNA sequences
is optimal if and only if its summary is in the set V of vertices of the align-
ment polytope. The Needleman–Wunsch algorithm efficiently solves the linear
programming problem over this polytope. For instance, for the 3d model with
fixed parameters, the alignment problem is the linear programming problem

Maximize X · x+ S · s+ g ·G subject to (x, s, g) ∈ V . (2)

For a numerical example consider the parameter valuesX = −200, S = −80 and
G = −400, which represent an approximation of the BLASTZ scoring scheme
(Section 3.1). The solution to (2) is attained at the vertex (x, s, g) = (30, 5, 2)
which is the 3d summary of the following alignment of our twoDrosophila introns

mel GTAAGTTTGTTTATATTTTTTTTTTTTTGAAGTGACAAATAGC--ACTTATAAATATACTTAG

pse GTTCGTTAACACATGAAATTCCATCGCCTGATTGTTCACTATCTAACTAACGAAT---TTTAG

** *** ** ** * * ** * ** * *** * *** ****

The 3d summary of this alignment is the marked vertex in Figure 2.
The problem of computing a parametric alignment is now specified precisely.

The input consists of two DNA sequences. The output is the set of vertices and
the set of facets of the alignment polytope conv(S). See also [11, Remark 2.29].
We note that the robustness cone of an optimal alignment summary is the
normal cone of the polytope at that vertex. The alignment fan is the normal
fan of the alignment polytope. See [11, p. 61] for definitions of these concepts.

We considered two different methods for constructing all alignment polytopes
for the two Drosophila genomes: polytope propagation and incremental convex
hull. In our study we found that polytope propagation was outperformed by the
incremental convex hull algorithm, especially for the higher dimensional models.

We now briefly outline the two methods. Polytope propagation for sequence
alignment is the Needleman–Wunsch algorithm with the standard operations of
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Figure 2: The 3d alignment polytope of our two Drosophila introns has 76 ver-
tices. The marked vertex (x, s, g) = (30, 5, 2) represents the BLASTZ alignment.

plus and max replaced by Minkowski sum and polytope merge (convex hull of
union). The polytope propagation algorithm was introduced in [10, 11].

The incremental convex hull algorithm, on the other hand, gradually builds
the alignment polytope by successively finding new optimal alignment sum-
maries, the vertices of the polytope. In order to find the new optimal summaries,
the algorithm repeatedly calls a Needleman–Wunsch (NW) subroutine that is
an efficient implementation of the classical Needleman–Wunsch algorithm. For
fixed values of the parameters, this subroutine returns an optimal alignment
summary. For instance, for the 3d model, the input to the NW subroutine is a
parameter vector (X,S,G) and the output is an optimal summary (x, s, g).

Suppose we have already found a few optimal alignment summaries, by run-
ning the NW subroutine with various parameter values. We let P be the convex
hull of the summaries in R

d, and we assume that P is already d-dimensional.
We maintain a list of all vertices and facets of P . Each facet is either tentative
or confirmed, where being confirmed means that its affine span is already known
to be a facet-defining hyperplane of the final alignment polytope. In each itera-
tion, we pick a tentative facet of P and an outer normal vector U of that facet.
We then call the NW subroutine with U as the input parameter. The output of
the NW subroutine is an optimal summary v. If the optimal score U · v equals
the maximum of the linear function U ·w over all w in P then we declare the
facet to be confirmed. Otherwise, the score U · v is greater than the maximum
and we replace P by the convex hull of P and v. This convex hull computation

9



running time (in seconds)
d=2 4.52 · 10−2 + 6.16 · 10−7V ll′

d=3 4.76 · 10−2 + 9.28 · 10−7V ll′ + 2.41 · 10−7Fll′

d=4 1.05 · 10−1 + 9.53 · 10−7V ll′ + 3.84 · 10−7Fll′

d=5 16.0 + 1.20 · 10−6V ll′ + 5.66 · 10−7Fll′

Table 3: Observed running times of the incremental convex hull algorithm for
computing alignment polytopes. Here, V is the number of vertices of a polytope,
F the number of facets, and l, l′ are the sequence lengths. The given functions
are a best-fit estimation from a sample of 764 out of the 877,982 sequence pairs.
In particular, 90% of the actual measured running times from this sample were
within 10% of this estimation. The running times are on a 2.5 GHz machine.

utilizes the beneath-beyond construction [20, §3.4.2] which erases some of the
tentative facets of the old polytope and replaces them by new tentative facets.

The algorithm terminates when all facets are confirmed. The current poly-
tope P at that iteration is the final alignment polytope. The number of iter-
ations of this incremental convex hull algorithm equals the number of vertices
plus the number of facets of the final polytope P . So for a given model, the
running time of the incremental convex hull algorithm scales linearly in the size
of the output. This was confirmed in practice by our computations (Table 3).

Our software, together with more details about our incremental convex hull
implementation are available for download at the supplementary website.

Given an alignment polytope, there are various subsequent computations one
may wish to perform. For instance, we may be interested in the robustness cones
at the vertices. In order to get an irredundant inequality representation of a
robustness cone, it suffices to know the edges emanating from the corresponding
vertex. Thus it is useful to also compute the edge graph of each of our polytopes.

2.4 Computational Results

Using our implementation of the incremental convex hull algorithm described
above, we computed the 2d, 3d, and 4d polytopes for each of the 877,982 segment
pairs. We also computed 5d polytopes in many cases. These polytopes are
available for downloading and viewing at the supplementary website

http://bio.math.berkeley.edu/parametric/.

We empirically determined the expected CPU time to construct alignment
polytopes. The results are reported in Table 3. As expected, the running time of
the incremental convex hull algorithm scales linearly with the number of vertices
plus facets. The running time of a single Needleman–Wunsch subroutine call
scales linearly with the product ll′ of the sequence lengths l and l′.

In order to effectively compute these polytopes, not only must we have an
algorithm which runs quickly as a function of the number of vertices and facets,

10
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d 2 3 4 5
Average V 5.8 47.8 580.8 6406.0
Average F 5.8 47.1 859.4 18996.5

Table 4: Averages of the number V of vertices and the number F of facets of
alignment polytopes. These averages are from the same sample as in Table 3.
The average of the sum l + l′ of the sequence lengths for this sample was 82.7.

d 2 3 4 5
# of vertices 13 76 932 10009
# of edges 13 159 3546 66211

# of 2d faces — 85 4208 139723
# of 3d faces — — 1594 118797
# of 4d faces — — — 35278

Avg. # of edges per vertex 2 4.2 7.6 13.2

Table 5: Face numbers of the alignment polytopes for the intron sequences from
the beginning of the Introduction. The average number of edges containing a
vertex is the average number of linear inequalities bounding a robustness cone.

but the number of vertices and facets must themselves be small. The theoretical
bounds discussed in the Introduction ensure that these numbers grow polynomi-
ally, for any fixed d. In our computations we found that the numbers of vertices
and facets of alignment polytopes are quite manageable even in dimensions 4
and 5. Averages of the numbers we actually observed are reported in Table 4.

We conclude our summary of computational results with a look at the align-
ment polytopes of the orthologous pair of introns in the Introduction. The
sequence lengths are l = 60 and l′ = 61. The 2d alignment polytope is shown
in Figure 1. The 3d alignment polytope is shown in Figure 2. Table 5 reports
statistics for the 2d, 3d, 4d, and 5d alignment polytopes for this sequence pair.

3 From Polytopes to Biology

We describe three applications of our whole genome parametric alignment.
First, we discuss how alignment polytopes are useful for parameter selection,
and we assess the BLASTZ alignment of D. melanogaster and D. pseudoob-
scura. We then revisit the cis-regulatory element study in [21], and we determine
alignments that identify previously missed conserved binding sites. Finally, we
examine the problem of branch length estimation and provide a quantitative
analysis of the dependence of branch length estimates on alignment parameters.
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3.1 Assessment of the BLASTZ alignment

A key problem in sequence alignment is to determine appropriate parameters for
a scoring scheme. The standard approach is to select a model and then identify
parameter values that are effective in producing alignments that correctly align
certain features. For example, the BLASTZ scoring matrix [18] was optimized
for human-mouse alignment by finding parameters that were effective in aligning
genes in the HOXD region. The BLASTZ scoring scheme is given by a scoring
matrix called HOXD70 [18],









A C G T

A 91 −114 −31 −123
C −114 100 −125 −31
G −31 −125 100 −114
T −123 −31 −114 91









,

together with a space score of -30, and a gap score of -400. Although the
HOXD70 matrix has six distinct entries, it can be approximated by a Kimura-2
matrix (Table 2), since 91 is close to 100, and 114 is close to 123 and 125.

The alignment polytope of a pair of DNA sequences is a representation of all
possible alignments organized according to a scoring scheme. Thus, our results
and methodology make it possible, for the first time, to identify parameters that
are guaranteed to optimize the alignment according to desired criteria. More-
over, our results offer biologists a mathematical tool for systematically assessing
whether a proposed single alignment is suitable for its intended purpose.

We initiated such a study for the BLASTZ [4] alignment of D. melanogaster
and D. pseudoobscura, which is available at http://genome.ucsc.edu/. This
alignment is widely used by biologists who study Drosophila. Although the
BLASTZ alignment procedure is based on an initial “seeding” procedure (similar
to our identification of constrained segment pairs), the alignments are then
constructed using the Needleman–Wunsch algorithm with the HOXD70 matrix.

Recall that our orthologymap consisted of 1,999,817 segment pairs: 1,116,792
consisted of segments for which we fixed the alignment (constrained segment
pairs) and 883,025 were unconstrained segment pairs for which we constructed
alignment polytopes. We found that the BLASTZ alignment agreed with 623,710
of our unconstrained segment pairs, of which 622,173 did not contain N’s. For
each of these 622,173 segment pairs, we computed the 2d, 3d and 4d alignment
summaries for the BLASTZ alignments, and we determined whether or not they
are optimal for some choice of model parameters.

We found that 269,186 (43.3%) of the BLASTZ alignments are vertices of
the 3d polytope, but not the 2d polytope, and 201,982 (32.5%) are vertices of
both the 2d and 3d polytopes. Only 151,004 (24.3%) of the BLASTZ align-
ments are not vertices of either the 2d or 3d alignment polytopes. In summary,
our computations show that 32.5% of the BLASTZ alignments correspond to
vertices of the 2d polytope and 75.7% correspond to vertices of the 3d polytope.
These numbers are even higher for the 4d and 5d alignment polytopes.
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Curiously, there is precisely one sequence pair where the BLASTZ alignment
is a vertex of the 2d polytope but not the 3d polytope. This alignment is

mel AGCCGAACCGGATATCCAGGCCGAGGCC

pse GCCAGAGCCGGA-GCCTGAGCCGGAG--

* ** ***** * *** *

The 3d summary of this alignment is (11, 3, 2), which is the midpoint of the edge
with vertices (11, 3, 1) and (11, 3, 3) on the 3d polytope. Hence this alignment
is not optimal for any choice of parameters (X,S,G). However, it is optimal for
the 2d model since the edge maps onto the vertex (11, 3) of the 2d polygon.

Our results show that not only does the BLASTZ alignment agree well with
our constrained segment pairs, but, even on the unconstrained segment pairs,
the BLASTZ alignments are mostly vertices of the three dimensional polytopes.
This suggests that there may be a statistical advantage to working with one
of the lower dimensional models, and also indicates that the polytopes may be
useful for finding parameters. We illustrate this point of view in the next section,
where we identify vertices in the alignment polytope (and therefore parameter
robustness cones) that are suitable for the alignment of cis-regulatory elements.
Any user of the BLASTZ alignments may now use the alignment polytopes we
provide in order to assess whether or not the fixed choice of the HOXD70 matrix
is the right one for their particular biological application.

3.2 Conservation of cis-regulatory elements

A central question in comparative genomics is the extent of conservation of cis-
regulatory elements, and the implications for genome function and evolution.
Using our parametric alignment, we discovered that cis-regulatory elements may
be more conserved between D. melanogaster and D. pseudoobscura than previ-
ously thought. Specifically, we used our alignment polytopes to examine the
degree of conservation for 1346 transcription factor binding sites [22] available
at www.flyreg.org (we excluded 16 sites which were located in segment pairs
containing Ns). The 1346 sites include the 142 sites examined by Richards et
al. [21] in their comparison of D. pseudoobscura and D. melanogaster.

Specifically, for each of the 1346 elements, we identified the orthologous
segment pairs from our orthology map that contained the elements. We then
extracted the polytopes from our whole genome parametric alignment. For
each polytope, we determined an optimal alignment for which the number of
matching bases of the corresponding element was maximized.

As an example consider the transcription factor Adf1. It binds to a cis-
regulatory element at chr3R:2,825,118-2,825,144 in D. melanogaster (Adf1->
Antp:06447 in the flyreg database). The BLASTZ alignment for this element is

mel TGTGCGTCAGCGTCGGCCGCAACAGCG

pse TGT-----------------GACTGCG

*** ** ***
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This alignment suggests that the D. melanogaster cis-regulatory element is not
conserved in D. pseudoobscura. However, there are many optimal alignments
which indicate that this element is conserved. Examining our constrained seg-
ment pairs, we found that the prefix TGTG was at the end of a 13bp exact match.
The remaining D. melanogaster element was part of a segment pair which has
813 distinct optimal alignments in the 3d model. Among these, we found the
following alignment with parameters G = −3, S = −8, X = −18:

mel TGTG----CGTCAGC--G----TCGGCC---GC-AACAG-CG

pse TGTGACTGCG-CTGCCTGGTCCTCGGCCACAGCCAAC-GTCG

**** ** * ** * ****** ** *** * **

Note that we include the TGTG prefix in order to show a complete alignment of
the cis-regulatory element. The second alignment has 24 matches instead of the
BLASTZ alignment with 8. The number of matches can be used to calculate
the percent identity for an element as follows:

percent identity = 100×
#matches

#bases in element
.

Percent identity was used in [21] as a criterion for determine whether binding
sites are conserved. The BLASTZ alignment has 30% identity and the alignment
with 24 matches has 89% identity. It is an optimal alignment with the highest
possible percent identity. Examining all 813 optimal alignments, it appeared to
us that the following alignment (obtained with G = −882, S = −87, X = −226)
is more reasonable, even though it has a lower percent identity (67%):

mel TGTGCGTCAGC------GTCGGCCGCAACAGCG

pse TGTGACTGCGCTGCCTGGTCCTCGGCCACAGC-

**** * ** *** * ** *****

This alternative alignment suggests that the percent identity criterion may not
be the best way to judge the conservation of elements. Regardless, we believe our
parametric alignment indicates that in this particular case, the D. melanogaster
cis-regulatory element is likely to have been conserved in D. pseudoobscura.

2d 3d
Mean % id opt param 80.4 85.1
Mean % id fix param 79.1 −

Table 6: Cis-regulatory element conservation.

Our overall results are summarized in Table 6. We found that parameters
can be chosen so as to significantly increase the number of matches for cis-
regulatory elements. The “opt param” row in the table shows results for the
case where parameters were chosen separately for each segment pair so as to
maximize the % identity of the cis-regulatory elements. The “fix param” row
shows results when one parameter was selected (optimally) for all segment pairs
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simultaneously (this was only computed for the 2d model). Note that the mean
per site % identity reported in [21] was 51.3%, considerably lower than what we
found using the whole genome parametric alignment (even for the 2d model).

Our results seem to indicate that cis-regulatory elements are more conserved
between D. melanogaster and D. pseudoobscura than previously thought. The
alignment polytopes should be a useful tool for further investigation of the extent
of conservation of cis-regulatory elements among the Drosophila genomes.

3.3 The Jukes–Cantor distance function

An important problem in molecular evolution is the estimation of branch lengths
from aligned genome sequences. A widely used method for estimating branch
lengths is based on the Jukes–Cantor model of evolution [23]. Given an align-
ment of two sequences of lengths l, l′, with 2d alignment summary (x, s), one
computes the Jukes–Cantor distance of the two genomes as follows:

dJC(x, s) = −
3

4
log

(

1−
4

3

(

2x

l + l′ − s

))

.

See [11, Proposition 4.6] for a derivation of this expression which is also known
as the Jukes–Cantor correction of the two aligned sequences. The Jukes–Cantor
distance can be interpreted as the expected number of mutations per site.

Since the Jukes–Cantor distance dJC(x, s) depends on the underlying pair-
wise sequence alignment summary, which in turn depends on the alignment
parameters, it is natural to ask how the branch length estimate depends on the
parameters in a 2d scoring scheme. We therefore introduce the Jukes–Cantor
distance function which is the function JC : R2 → [0,∞) given by (X,S) 7→
dJC(x̂, ŝ) where (x̂, ŝ) is the alignment summary maximizing X · x+ S · s.

We computed the Jukes–Cantor distance function JC for the entire genomes
of D. melanogaster and D. pseudoobscura. As the result of this computation, we
now know the Jukes–Cantor distances for all whole genome alignments which
are optimal for some choice of biologically reasonable parameters (X,S).

The notion of “optimal” used here rests on the following precise definitions.
Given parameters (X,S), the optimal 2d alignment summary (x, s) for the two
genomes is the sum of the optimal summaries of all 877,982 unconstrained seg-
ment pairs plus the sum of the alignment summaries of the non-coding con-
strained segment pairs (which do not depend on the parameters). We deter-
mined that the constrained segment pairs contained 91,355 mismatches and
16,339,305 matches. The genome alignment polytope is the Minkowski sum of
the 877,982 alignment polytopes. The vertices of the genome alignment poly-
tope correspond to optimal summaries of whole genome alignments.

We computed the genome alignment polytope for the 2d model. Remarkably,
this convex polygon, which is the Minkowski sum of close to one million small
polygons as in Figure 1, was found to have only 1,183 vertices. Moreover, of
the 1,183 vertices of the genome alignment polytope, only 838 correspond to
biologically reasonable parameters (X < 0, 2S < X). The finding that there
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Figure 3: The Jukes–Cantor distance function of two Drosophila genomes.

are so few vertices constitutes a striking experimental validation of Elizalde’s
Few Inference Functions Theorem [11, §9] in the context of real biological data.

The Jukes–Cantor distance function JC of D. melanogaster and D. pseu-
doobscura is a piecewise constant function on the (X,S)-plane. Indeed, JC is
constant on the cones in the normal fan of the genome alignment polygon. Note
that JC is undefined when (X,S) is perpendicular to one of the 1,183 edges
of the genome alignment polygon. On such rays, the Jukes–Cantor distance
function jumps between its values on the two adjacent cones in the normal fan.

The graph of the Jukes–Cantor distance function is shown in Figure 3. The
function ranges in value from 0.1253 to 0.2853, is monotonically decreasing as
a function of S, and monotonically increasing as a function of X . We found it
interesting that at the line X = S, there is a large “Jukes–Cantor jump” where
the value of the function increases from 0.1683 to 0.2225.

The Jukes–Cantor distance function is a new tool for parametric reconstruc-
tion of phylogenetic trees. Instead of estimating a single distance between each
pair of genomes in a multiple species phylogenetic reconstruction, one can now
evaluate the Jukes–Cantor function at vertices of the Minkowski sum of the
whole genome alignment polytopes. These can be used for parametric phyloge-
netic reconstruction using distance-based methods such as neighbor joining.
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4 Discussion

The summary of a pair of aligned sequences is a list of numbers that determine
the score for a scoring scheme. The alignment polytope is a geometric represen-
tation of the summaries of all alignments. It is an organizing tool for working
with all alignments through their summaries. We view the Needleman–Wunsch
algorithm as a fast subroutine for finding vertices of the alignment polytope.
The construction of alignment polytopes is useful for biological studies based
on sequence alignments where the conclusions depend on parameter choices.

We have highlighted three biological applications of our parametric align-
ments, namely the problem of parameter selection for sequence alignment, func-
tional element conservation, and estimation of evolutionary rate parameters. In
each case, our perspective suggests new directions for further research.

Alignment polytopes offer a systematic approach to solving the parameter
selection problem. Although this paper did not address statistical aspects of
parameter selection, we wish to emphasize that the vertices of the polytopes
represent maximum a posteriori estimates of alignments for pair hidden Markov
models. Our polytopes provide a setting for developing statistically sound meth-
ods for parameter selection that are not dependent on pre-existing alignments.

Our results on cis-regulatory elements show that they may be significantly
more conserved than previously thought, and suggest that, in contrast to the
analysis of ultra-conserved elements, sequence alignment procedures can be cru-
cial in the analysis of certain functional elements. The ongoing Drosophila
genome projects (consisting of sequencing 12 genomes of related species) of-
fer an extraordinary opportunity for extending our study and further exploring
cis-regulatory element conservation. This leads to the question of multiple align-
ment, which we have not addressed in this paper, but which we believe presents
a formidable and important challenge in biological sequence analysis. In particu-
lar, it will be interesting to explore the geometric point of view we have proposed
and to develop parametric algorithms for multiple sequence alignment.

The Jukes–Cantor distance function, computed here for the first time, will
be important for determining the robustness of evolutionary studies based on se-
quence alignments. Estimates of the neutral rate of evolution, which are crucial
for comparative genomics studies, can hopefully be improved and further devel-
oped using our mathematical tools. The Jukes–Cantor distance function opens
up the possibility of parametric distance-based phylogenetic reconstruction. An
immediate next step is the extension of our results to other phylogenetic models.

The construction of millions of alignment polytopes from two Drosophila
genomes has revealed mathematical insights that should be explored further.
For example, we observed empirically that alignment polytopes have few facets.
Although we have not explored the combinatorial structure of alignment poly-
topes in this paper, this offers a promising direction for improving our paramet-
ric alignment algorithms and is an interesting direction for future research.
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