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Abstract

This article presents a new way to understand the descriptive ability

of tree shape statistics. Where before tree shape statistics were chosen by

their ability to distinguish between macroevolutionary models, the “res-

olution” presented in this paper quantifies the ability of a statistic to

differentiate between similar and different trees. We term this a “geomet-

ric” approach to differentiate it from the model-based approach previously

explored. A distinct advantage of this perspective is that it allows evalu-

ation of multiple tree shape statistics describing different aspects of tree

shape. After developing the methodology, it is applied here to make spe-

cific recommendations for a suite of three statistics which will hopefully

prove useful in applications. The article ends with an application of the

tree shape statistics to clarify the impact of omission of taxa on tree shape.

The analysis of phylogenetic tree shape provides one way of understanding
the forces guiding macroevolution, as well as understanding possible biases of
tree reconstruction methodology. Although it has been a subject of study for
many years, a recent editorial in this journal [Simon and Page, 2005] hints that
finding the forces guiding tree shape is a long-term challenge which has yet
to be completely understood. Joe Felsenstein [2004] concludes the chapter on
tree shape methodology in his recent book with the simple phrase “[c]learly
this literature is in its early days.” Indeed, tree shape is still a challenge, and
an important one. A complete understanding would help resolve important
questions in biology such as the roles of adaptive radiation and environmental
change in generating diversity. Tree shape also poses difficult issues of its own,
such as the impact of missing or extinct taxa on our understanding of historical
biodiversity. Not only are many fundamental questions left unanswered, but the
area is ripe for progress: the large number and size of contemporary phylogenies
forms a fantastic corpus on which macroevolutionary hypotheses can be tested.

In order to use phylogenetic tree shape as a tool, we need methods to measure
and quantify aspects of tree shape. Almost all work to this day has been done
with measures of tree “balance,” which is the degree to which two sister taxa
are of the same or different size. A major vein of research has been to compare
balance of trees created from data to trees produced by one or another null
model [Savage, 1983] [Guyer and Slowinski, 1991] [Guyer and Slowinski, 1993]
[Stam, 2002]. Kirkpatrick and Slatkin [1993], in one of the early papers in the
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area, quantified the power of different measures of tree balance in distinguishing
between two models of tree shape. The two models are extremely simple: one,
called the Yule or ERM model, develops a tree by starting with a single species
and then choosing uniformly among species to speciate. The other, called the
PDA model, is simply the distribution on tree shapes induced by the uniform
distribution on labelled trees.

Studies have shown that most trees created from data are less balanced
than would be expected from the ERM model, yet more balanced than would
be expected from the PDA model [Mooers, 1995] [Mooers and Heard, 1997]
[Purvis and Agapow, 2002]. Models of increasing sophistication have appeared,
attempting to re-create this observed pattern of tree shape observed in nature.
For example, Heard [1996] found that speciation rate variation among lineages
can lead to imbalanced trees. Losos and Adler [1995] found that short “refrac-
tory periods”– periods before which a new species can speciate again– led to
more balanced trees, while Rogers [1996] found that very long refractory peri-
ods led to less balanced trees. Aldous [1995, 2001] was the first to propose a
(non-evolutionary) model which interpolated between the ERM and the PDA
models. More recently, Steel and Mckenzie [2001] and Pinelis [2003] have since
developed evolutionary models which also interpolate.

With these models, one could presumably arrange parameters to correctly fit
the observed pattern of imbalance as reported by a given statistic. But is that
really enough? What if other aspects of the tree shape, not measured by the
statistic, differ considerably? After all, any single statistic is a one-dimensional
summary of a very complex set of data. One might follow the suggestion of
Agapow and Purvis [Agapow and Purvis, 2002] and use two different balance
statistics which measure balance in different parts of the tree, but in this paper
we hope to present a more direct approach.

The only proposal made in the literature which has the potential to encap-
sulate lots of information about the shape of a tree has been by Aldous [2001].
He suggests first constructing a scatterplot of the interior nodes, where the x
coordinate is the size of the subclade subtended by that interior node, and the
y coordinate is the size of the smaller daughter clade. The proposal is then to
perform nonlinear median regression on the log-log version of this scatterplot
and then use the fitted function as a descriptor of tree shape. We will call the
log-log scatterplot the “Aldous scatterplot” in the following.

There are a number of advantages to this approach. It is very natural from a
statistical viewpoint relative to the other, more ad-hoc, measures of tree balance.
The method has the potential to give quite a lot of information about tree shape
compared to a single summary statistic. Finally, it allows comparison of trees of
different sizes by superposition of scatterplots, which is a significant advantage.
There is currently no generally accepted method for comparing trees of different
sizes using the standard statistics; this remains a problematic issue [Mooers,
1995] [Stam, 2002].

However, there are three disadvantages which may not make Aldous’ pro-
posal as practical as might be hoped. The first is that regression works best with
many points of data, and thus one can only expect his technique to work with
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Figure 1: Good and bad statistics from the geometric perspective. The horizon-
tal axes represent values of hypothetical statistics. In figure (a) very different
trees are separated, while in figure (b) very different trees are close together.

rather large trees. This problem is exacerbated by the fact that isomorphic sub-
trees are superimposed on one another in the scatterplot, further reducing the
number of fittable points. The second is an inherent problem with summarizing
a tree as a scatterplot of this sort. Assume that tree T has two non-isomorphic
subtrees A and B of the same size. Exchanging A and B in T will not change
the scatterplot and thus not change any regression parameters, although the
resulting tree may differ significantly in shape. The third problem is that the
resulting output can be hard to interpret. What does, for example, the kth Tay-
lor coefficient of the fitted function actually signify? Despite these issues, we
believe that this technique is underutilized and may be the technique of choice
when working with large phylogenies.

Overall, it appears that additional methods would be useful for understand-
ing tree shape. This paper attempts to provide some of these new methods.

The geometric approach

The basic philosophy behind the geometric approach is that similar trees
should have similar statistics, and that rather different trees should have differ-
ent statistics. This philosophy is summarized in Figure 1. All of the trees with
six tips are evaluated by two hypothetical statistics. The top axis shows what
one might consider a good statistic. The maximally balanced tree is on the far
left side, and the completely unbalanced tree is on the far right. When a subtree
is preserved, the statistic tends not to change too much. The bottom axis shows
what might be considered a bad statistic. The extremes of tree balance are now
put together, and two similar trees are now on the two extremes of the axis.

If we are to apply this sort of intuition on trees, it is necessary to formalize the
notion of similar and different. We do so by constructing a metric on unlabeled
trees.

A metric for evolutionary histories

Here we describe a metric on unlabeled trees which can be applied directly
to compare tree shapes or can be used to guide the selection of statistics as
described below. To begin we state that by “tree” we will mean a finite strictly
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Figure 2: A single rooted NNI move.

bifurcating rooted tree without leaf labels or specified edge lengths. We have
chosen finite strictly bifurcating rooted trees, as these correspond most natu-
rally to the output of models. This paper concerns itself with tree shape rather
than the identity of taxa, thus we consider unlabeled trees. Finally, our in-
tent in this paper is to understand the combinatorial content of the tree, and
thus we consider trees without specified edge lengths. The case including edge
lengths would be an interesting future extension of this work, but would require
a significant further development of the methodology.

We recall that a metric g is simply a set of “distances” between pairs of
a collection of objects satisfying (i) g(x, y) = 0 if and only if x = y, (ii)
g(x, y) = g(y, x), (iii) the triangle inequality: g(x, y) + g(y, z) ≥ g(x, z). The
metric we consider is simply the nearest neighbor interchange (NNI) metric on
unlabeled trees, depicted in Figure 2. A single NNI “move” represents a change
of branching order of a tree to one of two possible configurations. The unlabeled
NNI distance from one tree to another is defined to be the minimum number of
moves necessary to change one tree to the other. Note that these interchanges
have appeared before in Kuhner et al. [1995] as proposal draws for their their
Metropolis-Hastings approach to estimating population parameters.

Tree space equipped with the NNI metric is shown in Figure 3 for trees on
6 leaves. It is a graph which has connections between any two trees which are
a single NNI move apart. Note that the NNI distance is a special case of the
shortest-path metric on a graph and thus we are justified in calling it a metric.
Also, although the metric is not explicitly model-based, a change of branching
order can be thought of as a change of timing of diversification events.

Unsurprisingly, computing this metric is NP-complete, as can be seen by
a small modification of a similar proof by DasGupta and et. al. [2000]. Their
paper demonstrates that calculating the unrooted NNI distance on unrooted
trees is NP-complete. However, the unrooted NNI moves are identical to the
moves in Figure 2 when the tree shown in the diagram is chosen to be anything
but the entire tree. Therefore we can simply root the tree in Figure 4 of their
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Figure 3: Unlabeled tree space equipped with the NNI metric. An edge between
two trees means that a single NNI move changes one to the other.

paper on the far left side of the main linear tree and the proof proceeds as usual.

Resolution of Statistics

In this section we define the notion of “resolution” of a tree shape statistic.
Although the formal definition of the resolution is in terms of the statistical
method of multidimensional scaling, we will first describe how resolution relates
to the more common method of principal component analysis, and then give an
intuitive definition of resolution as a measure of how much a statistic “spreads
out” the data. This resolution measure will be applied to various tree shape
statistics below where the underlying data will be the tree space of a given
number of leaves. In this way the resolution will be our operational definition
of performance for tree shape statistics.

The resolution measure formalizes the intuitive notion that similar objects
should have similar statistics and rather different objects should have different
statistics. For the moment let us consider these objects to be points in n-
dimensional space. A natural statistic which satisfies our criteria is the familiar
first principal component from multivariate statistics. It is some projection of
the original spatial data, so objects which are close together stay close together
after projection. Also, it is the direction along which variance of the coordinates
of the points is maximized, so as much as possible objects which are far apart
stay far apart. In this way we consider the first principal component to be the
best possible statistic for this collection of points, and will assign it the highest
resolution value.

We can get at the principal component by thinking of it as the maximiza-
tion of a certain “quadratic form.” In the standard formulation, the principal
components are the eigenvectors of the covariance matrix constructed from the
coordinates of the sample points. However, it turns out that even if we do
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not have the actual coordinates of the points, but rather the distances between
them, we can still construct the covariance matrix. The process goes as follows:
let H be the n× n “centering matrix”

H = I − (1/n)J

where J is the matrix with every entry equal to one. The operation of the cen-
tering matrix on a vector subtracts off the average of the entries of the vector
from each component, so the result is a vector which is perpendicular to the
vector of ones. Let S(A) be the component-wise matrix squaring operation,
such that the ij entry of S(A) is a2ij . Then if D is a “euclidean distance ma-
trix,” i.e. a matrix such that the ij entry is the distance between two points i
and j in a euclidean space, then B = H S(D)H will correspond exactly with
the covariance matrix of those same points calculated in the traditional way
[Mardia et al., 1979].

With the covariance matrix now in hand, we can apply the Rayleigh Quotient
theorem, which is a special case of the Courant-Fisher theorem. It states that
the eigenvector corresponding to the largest eigenvalue of a symmetric matrix
maximizes the quadratic form x

TMx over all unit-length vectors x [Ortega,
1987]. Thus in our setting the first principal component is the unit-norm x

which maximizes the quadratic form

R(x) = − x
TH S(D)Hx. (1)

Again, the action of left multiplication by H simply subtracts the average of the
components of x. Therefore maximization is certainly achieved by an x which
has average zero, i.e. is perpendicular to one. On such x, H clearly has no
effect. Therefore we can obtain first principal component as

argmax
‖x‖=1

x⊥1

x
TS(D)x. (2)

Written out in a slightly longer form this is

argmax
‖x‖=1

x⊥1

∑

i,j

−d2ijxixj (3)

This formula has a simple and intuitive explanation. As mentioned above, in
our view a statistic should assign very different values to objects which are far
apart. This equation simply formalizes this intuition in a nice way: an individual
term of the sum in (3) will be maximized if xi is very negative and if xj is very
positive. The summation and the distances simply combine all of these terms
together in a weighted fashion such that ij pairs which are distant carry more
weight than ones which are close. Therefore the more distant objects will tend
to be farther apart in x-value, and the closer objects will tend to be closer in
x-value.

We will call the quadratic form R of (1) the “resolution” of a statistic, in the
sense that a statistic which differentiates between close and distant objects has
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a high level of resolution. As mentioned above, the first principal component
maximizes R, and thus its value is an upper limit on the resolution of a statistic.
However, we will see below that some well-known statistics on tree space achieve
resolution nearly that of the first principal component.

So far we have defined the resolution for data sets of distance matrices for
configuration of points in euclidean space. Although phrased in a slightly un-
usual manner, this has led us into the well-known area of principal component
analysis. However, our intent is to apply this technique to the space of all un-
labeled trees with the NNI metric. The distance matrix corresponding to this
space is far from being a euclidean distance matrix. Is it possible to continue
with the same formalism as in the euclidean setting?

It turns out that we can, and that the procedure is now called metric mul-
tidimensional scaling (MDS) [Mardia et al., 1979]. The only difference is that
D is now allowed to be non-euclidean. In essence, when we substitute a non-
euclidean distance matrix into (1), we consider the projection of the squared
centered matrix onto the cone of semidefinite matrices. Thus multidimensional
scaling performs principal component analysis on the “closest” euclidean dis-
tance matrix to our original matrix in a specific sense [Dattorro, 2005]. This
operation certainly loses some data, but enough information is retained to un-
derstand the descriptive ability of several statistics. We visit this issue in the
last section.

Note that this is not the first application of MDS to phylogenetic analysis:
Hillis et al. [2005] applied it with interesting results to the space of trees with
labeled tips. They used MDS with the Robinson-Foulds distance metric as a tool
for visualization and analysis of the output of tree reconstruction software. Our
intent and methods differ here, as we are concerned with finding near-optimal
statistics for understanding unlabeled tree space with the NNI metric.

In this section we have defined the resolution as function that allows us to
understand the descriptive ability of some statistic. At this point we specialize
to the case of tree shape statistics on tree space equipped with the NNI metric.
Resolution scores are calculated as follows: first construct a vector with rows
equal to the value of the statistic on all trees in tree space. Then apply the
matrix H to center the vector; then normalize the vector in the euclidean sense
resulting in a vector x̂. The resolution is the value of x̂TS(D)x̂. We will use
this definition to guide selection of statistics.
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n λ0 Ic N̄ σ2

N I2 B1 B2 A1 A2

7 7.01 6.29 6.34 6.07 5.90 6.22 6.29 2.67 2.70
8 21.48 19.43 19.07 18.05 17.67 18.89 19.04 5.82 6.02
9 48.06 43.24 43.38 41.13 39.44 42.29 42.57 7.71 8.42
10 125.11 116.37 115.93 110.07 103.60 111.18 111.55 31.14 33.74
11 299.82 283.47 282.88 268.50 249.33 269.62 269.56 84.38 89.79
12 755.12 714.86 714.04 676.40 626.25 676.61 672.84 224.32 241.35
13 1856.88 1760.73 1760.97 1663.67 1525.18 1661.87 1645.81 575.67 622.98
14 4619.28 4387.95 4385.72 4139.01 3779.58 4113.12 4051.89 1458.20 1583.53
15 11392.51 10819.20 10817.17 10190.62 9241.58 10106.57 9909.07 3788.17 4124.96

Table 1: The resolution scores for tree statistics on the NNI distance matrix.

Results

In this section the methodology of the previous section is applied to com-
pare the resolution of tree shape statistics. We will first evaluate the stan-
dard list of statistics [Kirkpatrick and Slatkin, 1993] [Agapow and Purvis, 2002]
[Felsenstein, 2004] according to the above methodology. Then we search for a
best second statistic given the first, and the best third statistic given a first and
second. Our criterion for performance is high resolution on the whole unlabeled
tree space with the NNI metric as described in the previous section. The tree
space was generated and evaluated by an ocaml [Chailloux et al., 2000] program
whose source is available upon request.

We calculated the well-known statistics N̄ and σ2

N proposed by Sackin [1972],
Ic proposed by Colless [1982], and B1 and B2, proposed by Shao and Sokal
[1990]. We added to the list a rarely used statistic I2, invented by Mooers and Heard
[1997] to provide a measure which weights all nodes equally. Finally, we imple-
mented the proposal of Aldous [2001] to perform median regression as described
in the introduction. We fit a quadratic polynomial to the data using median
regression and interpreted the linear and quadratic coefficients as descriptive
statistics which we call A1 and A2.

We note here that although Aldous’ paper did not explicitly specify how to
perform the median regression, we have chosen nonlinear median regression as
described by Koenker and Bassett [1978]. This method minimizes the sum of
the distances of the estimated median to the data points. Median regression
performs much better (as a maximum-likelihood estimator) than least-squares
regression when errors are non-gaussian, as in our case. It can be easily imple-
mented using linear programming; in this case it was implemented in 34 lines of
code using an ocaml frontend to the GNU linear programming package GLPK.

The results of this analysis are presented in Table 1 and Figure 4. First, we
find that the resolution of two statistics, Ic and N̄ , is rather close to the first
eigenvalue, which is the upper limit for the resolution. This is quite remarkable,
in that two statistics which were designed “by hand” to measure a visible aspect
of tree shape end up having almost as much resolution as theoretically possi-
ble. The fact that overall tree balance appears as such an important descriptor
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Figure 4: Resolution scores divided by the first eigenvalue.

justifies in a sense the disproportionate amount of attention given to it in the
tree shape literature. Another nice fact is that the relative resolution scores cor-
respond loosely to the power of the statistics as found by Agapow and Purvis
[2002]: Ic and N̄ have the most resolution, followed by σ2

N and B1; B2 has the
lowest resolution of the standard suite of statistics. We report that in this first
setting, I2 does have substantially lower resolution than the other statistics,
however, we will see that it performs well in later settings. Finally, it appears
that the coefficients of the best-fit quadratic polynomial on the Aldous scatter-
plot should not be used as a first statistic in the simpleminded way presented
here on small trees; it is possible that an alternative formulation would yield
better results.

So far we have only validated that our technique gives results which do not
seem completely out of the ordinary. However, now we can do something new.
Let’s say that we choose Ic as our first statistic and ask the question “what is
the best second number to know about a tree given that we already know Ic?”
This question has a mathematical formulation: we simply project out the Ic
component of the matrix B and repeat the previous process.

The resolution scores of the previously chosen statistics are listed in Table
2 with the exception of Ic, which of course has resolution zero because we have
projected it out. We note first that N̄ has rather small resolution, which is to be
expected because it is highly correlated with Ic. Comparatively, I2, A1, and A2

now do better, which means that they measure a different aspect of tree shape
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n N̄ σ2

N I2 B1 B2 A1 A2

7 0.15 0.03 1.89 0.75 0.53 2.68 2.74
8 0.35 0.24 5.42 1.75 1.34 6.05 6.10
9 0.88 0.54 14.94 6.45 5.16 7.43 8.50
10 1.85 1.77 42.47 14.55 12.37 31.72 33.76
11 4.12 5.52 110.23 40.09 35.80 85.44 89.11
12 8.91 16.80 293.51 97.41 91.67 224.61 230.85
13 20.06 48.81 749.81 253.42 249.96 577.10 593.12
14 44.64 139.34 1930.63 625.33 645.74 1431.73 1449.77
15 102.17 387.97 4883.15 1586.90 1710.31 3657.50 3657.96

Table 2: Resolution scores for tree statistics on the NNI distance matrix after
projecting out Ic.

than does Ic.
However, it is possible to improve on existing statistics by explicitly con-

structing a statistic which measures a different aspect of tree shape than Ic.
Plotting the principal components of the B matrix suggests that a good second
statistic may be the change of balance from the root to the tips. We have im-
plemented this intuition in two ways, first as the “derived statistics” of a given
statistic, and second as a specific statistic which we call Q1.

First we describe the construction of the derived statistics of a given statistic
Y . Start by making a plot analogous to the Aldous scatterplot, except now the
x axis is the size of the subtree and y is the value of the statistic Y . Now do
median regression on this scatterplot and report the slope of the best-fit line or
the quadratic coefficient of the best-fit quadratic polynomial. Given an original
statistic Y we will call these two derived statistics Y ′ and Y ′′ in analogy to the
first and second derivatives of calculus. Higher derived statistics are of course
possible but will not be investigated in this paper.

We have designed another statistic, which we call Q1, which also attempts
to quantify the change of balance from the root to the tips. The conceptual
model for this statistic is the idea that at some time in the past there may have
been a change of evolutionary machinery such that the balance before that time
differs from the balance after that time. In some sense the procedure tries to
find that time and then compares the balance before and after that time.

The procedure can be described as follows. Begin by assigning to each
internal node a “local imbalance,” which quantifies the degree of imbalance just
at that node. If a bifurcating internal node has subtrees of size sl and sr, the
local imbalance for trees is

|sl − sr|

sl + sr − 2
.

This quantity is similar to the summand in the definition of I2 by Mooers and Heard
[1997]. We set the local imbalance of a three-node tree to be one at each node.
We set the local imbalance of a two-node tree to be zero unless it is part of a
three-node tree.
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n Q1 cherries I ′c I ′
2

B′′
1

B′′
2

A1 A2

7 4.84 1.71 3.53 2.92 2.52 2.50 2.68 2.74
8 12.29 5.48 10.34 10.07 6.41 6.48 6.05 6.10
9 30.88 15.27 28.13 27.97 15.23 15.58 7.43 8.50
10 73.07 44.80 61.97 62.01 44.96 46.37 31.72 33.76
11 173.93 118.61 147.68 146.36 122.90 129.08 85.44 89.11
12 427.55 322.74 347.84 340.43 312.94 322.52 224.61 230.85
13 1024.86 833.99 871.08 868.45 798.39 823.73 577.10 593.12
14 2459.67 2171.81 2127.44 2059.13 2042.00 2101.81 1431.73 1449.77
15 5972.63 5530.14 5058.50 4873.71 5103.33 5232.47 3657.50 3657.96

Table 3: Resolution scores for tree statistics on the NNI distance matrix after
projecting out Ic.

After local imbalances have been assigned, we iterate up the tree to find a
“cut” of the tree into one basal tree and then a collection of distal trees, which
must contain all of the leaves. The cut is first chosen such that the average local
imbalance of the internal nodes of the distal trees is maximized. Then the first
statistic is computed, which is the average imbalance of the internal nodes of
the distal trees minus the average imbalance of the internal nodes of the basal
tree. This process is repeated to create a second statistic, except a cut is chosen
such that the imbalance of the internal nodes of the distal trees is minimized.
Whichever value is greater in absolute value is then called Q1.

We also recall a statistic which has been understood from the theoretical
perspective but which is not in common usage in the tree shape literature: the
number of “cherries” of a tree. A “cherry” is simply a subtree of two leaves.
McKenzie and Steel [2000] have shown that the distribution of the number of
cherries is asymptotically normal under both the equal rates Markov and the
uniform model (see next section) and have derived the mean and variance for
each.

Table 3 presents the somewhat surprising results of the resolution method
as applied to the distance matrix after Ic has been projected out. The best
performance is achieved by Q1, the somewhat complicated statistic presented
above, but close behind is the number of cherries, perhaps the simplest possible
statistic. Although the performance of the cherry statistic lags behind the above
statistics as a first statistic (see Supplementary Material), it has remarkably
good performance as a second statistic. Similar performance is achieved by the
slightly more complex I ′c. We also report the values of B′′

1
and B′′

2
due to their

good performance.
Now assume we choose Q1 for our second statistic and look for a third. As

before, we project Ic and Q1 out of our matrix and compare scores. This time
it is N̄ ′′ which performs the best. However, we note that A1, A2, and I2 are not
far behind.

In the end, what is the best general-purpose suite of statistics to use for tree
shape description? For a first statistic, the answer is probably Ic or N̄ . They
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n B′′
1

B′′
2

Q′′
1

I ′′c A1 A2

7 2.34 2.42 1.87 1.30 1.77 1.97
8 6.53 6.75 4.39 5.12 5.08 5.55
9 15.55 15.86 9.73 12.89 7.44 8.43
10 44.91 45.83 38.16 37.03 31.60 33.83
11 122.45 127.04 99.51 92.82 85.30 88.91
12 313.13 321.23 245.45 250.41 223.88 230.76
13 798.41 820.11 645.11 619.09 577.72 586.28
14 2040.07 2095.10 1633.48 1524.52 1429.47 1428.79
15 5104.65 5223.00 3939.10 3822.40 3649.16 3603.47

Table 4: The resolution scores for tree statistics on the NNI distance matrix
after projecting out Ic and Q1.

have high resolution and are simple to compute. For a second statistic, Q1 has
the highest resolution but is somewhat complex; the number of cherries and I ′c
also have good resolution and simple interpretations. For a third statistic the
statistic with the highest resolution is B′′

2
, however if one is interested in three

statistics another good recommendation would be the triple (Ic, I
′
c, I

′′
c ) which

has satisfactory resolution and clear interpretation.

Example application

In the introduction, we proposed that “interpolating” evolutionary models
could be used to fit any given pattern of overall imbalance. We argued that this
fact motivates the use of multiple tree shape statistics, as a single statistic may
be insufficient to distinguish between trees generated by the original evolution-
ary model and a fitted one. In this section we investigate these matters using
simulations and the results of the previous sections.

The model we have chosen for this example application is Aldous’ “beta-
splitting” model [Aldous, 1995] [Aldous, 2001]. It is a simple model with a single
parameter, β, which allows interpolation between the “comb” tree (β = −2) and
the maximally balanced tree (β = ∞). The “equal rates Markov” or ERM tree
(i.e. the coalescent tree distribution) emerges when β = 0, and the “proportional
to different arrangements” or PDA tree (i.e. the distribution on tree shapes
induced by a uniform distribution on labeled trees) appears when β = −1.5.

The idea of this model is to recursively split the tips into two subclades using
the beta distribution. More precisely, if we assume that a clade has n taxa, the
probability of the split being between subclades of size i and n− i is

qn,β(i) = C(n;β)
Γ(β + i+ 1)Γ(β + n− i+ 1)

Γ(i + 1)Γ(n− i+ 1)

where C(n;β) is a normalizing constant. This distribution is equivalent to
scattering the taxa on the unit interval and then splitting with the B(β+1, β+1)
distribution [Aldous, 1995].
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This model is easily adapted to a maximum-likelihood framework. The
likelihood of each tree for a given β is the product of the likelihoods of each
split. We consider the likelihood of a collection of trees to be the product of
the likelihoods of each tree. With a trick from [Aldous, 1995] one can derive a
formula for the C(n;β) and then find a β which maximizes the log likelihood of
a collection of trees in the standard way.

As an application of the above statistics we investigate the effect of missing
taxa on phylogenetic tree shape using simulation. We will model the effect on
tree shape of a sequencing strategy which is common in the realm of infectious
disease: sequence only those strains which are significantly different from pre-
viously sequenced strains. We assume that the original tree emerged from an
evolutionary process which has the ERM distribution on trees. We then assume
that the edge lengths are distributed according to a N(1, .25) Gaussian distribu-
tion truncated below zero. Given such a tree with n leaves, we then recursively
delete k taxa in the following manner: find the pair of taxa which are closest
together in terms of tree distance (including edge length), and randomly delete
one of them. We then perform a maximum-likelihood fit as described above
on those trees, resulting in a β, and then generate a sample of beta-splitting
trees on n− k leaves using this β. Which statistics can distinguish between the
original trees and the fitted trees?

We performed this simulation study with a sample size of 500, n = 100,
and k = 10. The β value fitted to the described deletion process was −1.02,
corresponding to a decrease in balance from the β = 0 original tree. We then
compared statistics between 500 of the “fitted” beta-splitting trees and the
original trees with deleted taxa. The trees were then evaluated with the two-
tailed Wilcoxson rank sum test to find statistical power of each statistic to
differentiate between the two distributions. The results of this analysis are in
Table 5.

Remarkably, the statistical power for this scenario corresponds with the res-
olution of these statistics when Ic has been projected out. This makes some
sense because when we fit a tree to the beta-splitting model, we are primarily
fitting the overall balance of the trees. We recall that the four statistics with
highest resolution after projection were Q1, the number of cherries, I ′c, and I2.
Three out of four of these statistics are also the most powerful for our example
application. Although this is an indicative correspondence, one reason it is not
perfect is that the resolution scores trees based on overall descriptive ability and
here we consider statistical power to differentiate between two specific models.
For example, considering that cherries tend to be eliminated by the described
taxon deleting process, it is not surprising that the number of cherries would
have such high statistical power in this example application. We have also in-
cluded the statistics A1 and A2 in Table 5 because they performed reasonably
well; this corresponds with their good resolution after projecting out Ic as shown
in Table 2. It is not surprising that these statistics perform better on relatively
large trees. Finally, as might be expected for a situation in which we have fitted
the overall balance of a tree to the model, the statistic Ic has essentially no
power to distinguish between the two models.
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Ic cherries I2 Q1 I ′c A1 A2

NM 0.077 30 0.47 0.24 0.015 0.62 0.056
DM 0.076 29 0.49 0.27 0.019 0.51 0.089
p 0.16 7.6e-32 5.1e-13 1.8e-07 4.6e-07 4.4e-06 1.1e-06

Table 5: Comparison of the scores for various statistics when applied to trees
from two different models. “NM” signifies the median score of the statistic when
applied to a sample of ERM trees of size 90; “DM” signifies the median when
applied to a sample of beta-splitting trees with leaves deleted as described in
the text. The last line shows the p-value for the two-sided Wilcoxson rank-sum
test.

We argue that this simple simulation exercise further demonstrates that the
resolution measure can help guide the selection of good general-purpose tree
shape statistics. Although these statistics were chosen on purely geometric
grounds, they were also the most powerful for this somewhat arbitrary model.

Extensions

There are a number of limitations to this methodology which point the way
for future development. The first is that this application of the MDS technique
was to a specific model of tree space, namely that with the unlabeled NNI
distance. It is possible that this is not a good choice. However, if another
model is found which seems more appropriate, that can be easily brought into
the general framework presented here and derive analogous results. Another
angle of this problem is that the resolution parameter described implicitly takes
the uniform distribution on trees. That is to say, trees which are never seen
in models or from data carry equal weight in the resolution measure as trees
which are common. This could decrease the utility of the resolution measure,
especially when considering large trees. However, in the author’s opinion there
is no clear choice of distribution. In fact, the main purpose of tree shape theory
is to think about what sorts of distributions are appropriate for tree shape. If a
clear alternative distribution is found, some modifications will have to be made
to the methodology to incorporate this information.

Second, this methodology offers nothing to the debate of how to compare
the shape of trees of different size. This is a very fundamental problem which
may be more philosophical than technical: what does it actually mean to say
that a tree of one size has a similar shape to one of a different size? A common
response in the literature [Mooers, 1995] [Stam, 2002] is to compare in one way
or another the shape of a given tree to a sample of trees from a fixed distri-
bution; knowing the distribution of the statistic as for the number of cherries
[McKenzie and Steel, 2000] makes this an attractive option for some statistics.
However, if we wish to have a descriptive theory independent of perhaps over-
simple models, some other method will have to be found. This is clearly an
interesting avenue for future research.
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Third, because the number of unlabeled binary trees is very large, asymp-
totically O(cnn−3/2) [Harding, 1971] [Semple and Steel, 2003], we have had to
limit ourselves to moderately small trees. This may skew the analysis in that
statistics which perform poorly for small trees may perform quite well for large
trees; an example case might be Aldous’ descriptors of tree shape. One response
to this objection is that Figure 4 shows a certain level of stability as n increases:
statistics which are good for smaller n appear to be good for larger n as well. As
our understanding of this NNI tree space is very limited, we cannot prove any
statement of this type at this time. Furthermore, although increasingly large
trees are now available, the analysis of trees of intermediate size is still a chal-
lenge and at worst the above methodology is applicable to that case. However,
we do consider this to be a problem for future research.

Fourth, multidimensional scaling with non-euclidean data always loses some
information. This results from the fact that the analysis is actually performed
on a projection of the original distance matrix. As mentioned, the NNI tree
space is certainly non-euclidean: even in the innocuous-looking case of n = 6
(see Figure 3) some distortion results from a euclidean projection. The subject
of how much information is lost from this projection is very interesting but
requires a separate treatment. We will address these issues in a future article.

Fifth, edgelength information is conspicuously absent in tree shape analysis.
Typically information about timing of speciation (or other branching) events
is analyzed in a completely different manner, as a lineages-through-time plot,
which is then used to estimate speciation and extinction rates with maximum
likelihood [Nee et al., 1994]. Clearly any analysis of this sort eliminates topo-
logical information which may aid in choosing an evolutionary model. The tree
shape literature has already shown that the standard birth-death process where
each leaf is equally likely to split or be eliminated does not construct trees which
seem to reflect the imbalance seen in nature; nevertheless this assumption is im-
plicit in Nee et. al.’s analysis. More work is needed to integrate the tree shape
and timing literature.

Finally, we come to a limitation which is fundamental to any discussion of
trees: with very few exceptions, trees are not actual data. They are almost
certainly flawed reconstructions of historical events. A common response to
this problem by coalescent theorists trying to estimate evolutionary parameters
is to simply “integrate out” the history by performing MCMC iteration over
all possible histories [Kuhner et al., 1995]. However, we believe that there is a
signal in tree shape that stands out from the noise and which can guide us in
selection of evolutionary models. We also note that tree shape has a role in
understanding potential problems and biases of tree reconstruction methods.

In summary, we have developed a new method for evaluating tree shape
statistics, which we call the “resolution” of a statistic. This method formalizes
the intuition that a good statistic takes on similar values for similar trees and
different values for rather different trees. It has the advantage that it can help
choose a kth statistic given that k − 1 other statistics are already known; this
opens up the possibility of finding a useful suite of statistics to describe a tree.
We then use the method to make specific recommendations for such a suite of
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three statistics. Finally, we compare the results of the geometric analysis to two
model-based tree distributions and find that statistics with good resolution were
also the ones which had high power to distinguish the two distributions. We hope
that these statistics and methodology will prove useful for scientists engaged
in the fascinating questions emerging from macroevolution and phylogenetic
reconstruction. We suggest that this paper represents a small step in an area
which will continue to pose interesting questions for years to come.
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