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Abstract

For two genotypes that have the same mean number of offspring but differ in the
variance in offspring number, natural selection will  favor the genotype with lower vari−
ance. The concept of fitness becomes cloudy under these conditions because the out−
come of evolution is not deterministic. However, the effect of variance in offspring
number on the fixation probability of mutant strategies has been calculated under several
scenarios with the general conclusion that variance in offspring number reduces fitness
but only in proportion to the inverse of the population size ( Gillespie 1974, Proulx
2000). This relationship becomes more complicated under a metapopulation scenario
where the "effective" population size depends on migration rate, population structure,
and life cycle. We show that under hard selection and weak migration fitness in a metapo−
pulation composed of equal sized demes is determined by deme size. Conversely, for
high migration rates and hard selection the effective fitness depends on the total size of
the metapopulation. Interestingly, under soft selection there is no effect of migration or
neighboring population structure on effective fitness, and fitness depends only on deme
size. We use individual based simulations in developed in Shpak (2005) to validate our
analytical approximations and investigate deviations of our assumption of equal deme
size. 
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Introduction: A Summary of Previous Work

Consider two competing alleles in a population. An individual carrying one

allele or the complementary copy produces an average of Μ1  and Μ2  offspring in each

generation (respectively), with corresponding variance in offspring number per clutch of

Σ1
2, Σ2

2.  It  has been shown (Gillespie 1974) that the fixation probabilities cannot be

predicted from arithmetic mean fitness alone, i.e. for sufficiently high variance Σ2
2<Σ1

2,

the second allele can have a higher probability of fixation even when Μ2<Μ1. The condi−

tion for the first strategy having a higher probability of fixation than the second first

derived by Gillespie is

H1L Μ2 -
Σ2
2

�������
n

< Μ1 -
Σ1
2

�������
n

This inequality states that a higher mean fitness is not necessarily favored by

natural selection if  the variance is high, because of the possibility of the high mean, high

variance strategy producing a lower number of offspring than the competitor in any

given trial. It should be intuitively obvious that this effect is less pronounced in larger

populations due to the averaging effects of reduced sample variance for large n. This has

important implications for organisms where there is a trade−off  between producing a

high average number of offspring and reducing the variance, as the outcome of selection

for one strategy or another will  depend on the population size. For example, a semelpa−

rous reproductive strategy, all else being equal, has a higher variance in surviving off−

spring when clutches succeed or fail  as a whole than an iteroparous strategy with the

same mean number of offspring. If  the semelparous strategy also has a somewhat higher

mean, whether it  or a competing iteroparous strategy becomes fixed will  depend on

whether the population is large or small.

Gillespie calculated the relationship between mean, variance, and "effective"

fitness  by a change of variables in a diffusion equation and by collecting the coeffi−

cients associated with the first derivative of the density function and frequency p. Follow−

ing Proulx (2000), the relationship between variance in offspring number and selection

can also be derived  from first principles by calculating the expected change in the num−

ber of individuals x1(t) carrying alleles of the first type, with
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H2L x1  Ht + 1L = â
i=1

x1 HΜ1 + Ξ1@iDL,
where  Ξ1[i]  is a random variable with mean 0 and variance Σ1

2  (with corresponding

equations for the number of individuals with the second allele x2). Note that the only

contribution to variance considered here is that due to variation in offspring number, the

variance due to genetic drift  (sampling of a fixed number of individuals from an off−

spring pool) is not explicitly considered as contributing to Ξ. 

The expected frequency in the next time step is:

H3L p Ht + 1L =
Úi=1
x1 HΜ1 + Ξ1@iDL

�����������������������������������������������������������������������������������Úi=1
x1 HΜ1 + Ξ1@iDL + Úi=1

x2 HΜ2 + Ξ2@iDL .

At this stage, the effects of drift can be included by considering another sampling pro−

cess that introduces variance. However, so long as the sampling process is fair, the

expected frequency of allele 1 in the next generation will  be given by (3) (Proulx 2000).

In order to accurately describe selection in terms of first and second order terms alone, it

must be assumed that Ξ1[i]  is small of the order Ε. For convenience, the random variable

Ξi   is replaced by Εz[i],  where z[i]  is a rescaled random variable of order ~1 and Ε is a

constant <<1. Equation (3) then becomes
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H4L p Ht + 1L =
x1  Μ1 + Úi=1

x1 Ε z1@iD
����������������������������������������������������������������������������������������������
x1  Μ1 + Úi=1

x1 Ε z1@iD + x2  Μ2 + Úi=1
x2 Ε z2@iD .

The above expression can be written as a Taylor expansion (up to second order terms)as

a function of Ε about Ε0=0:H5L
x1  Μ1������������������������������

x1  Μ1 + x2  Μ2
+ Ε 

ikjjjjjikjjjjjHx1  Μ1 + x2  Μ2L â
i=1

x1

z1@iD -

x1  Μ1  
ikjjjjjâ
i=1

x1

z1@iD + â
i=1

x2

z2@iDy{zzzzzy{zzzzz � Hx1  Μ1 + x2  Μ2L2
y{zzzzz -

Ε2  
ikjjjjj Úi=1

x1 z1@iD HÚi=1
x1 z1@iD + Úi=1

x2 z2@iDL
������������������������������������������������������������������������������������������Hx1  Μ1 + x2  Μ2L2 +

x1  Μ1  HÚi=1
x1 z1@iD + Úi=1

x2 z2@iDL2

����������������������������������������������������������������������������Hx1  Μ1 + x2  Μ2L3

y{zzzzz.
The expansion can be simplified due to the fact that each reproductive event in a popula−

tion is independent, so that the covariances cov(z1[i],z1[j])=0  and cov(z1[i],z2[j])=0  for

all i,j.  Furthermore, the expectation values of z1, z2  are 0, so that the expected means

and variances are:

EAâ
i=1

x1

z1@iDE = EAâ
i=1

x2

z2@iDE = 0

EAikjjjjjâ
i=1

x1

z1@iDy{zzzzz
2E = x1  s1 ; EAikjjjjjâ

i=1

x2

z2@iDy{zzzzz
2E = x2  s2
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The terms s1,s2  are rescaled variance terms such that Σi
2=Ε2si . Substituting these vari−

ance and covariance relations into (5), together with the first moments Μ, one obtains the

expectation valueH6L E@p Ht + 1LD =

x1 Μ1�����������������������������
x1 Μ1 + x2 Μ2

-
x1 Σ1

2
�������������������������������������Hx1 Μ1 + x2 Μ2L2 +

x1 Μ1 Hx1 Σ1
2 + x2 Σ2

2L
������������������������������������������������Hx1 Μ1 + x2 Μ2L3

By abuse of notation, p(t)=p, the initial  frequency of allele 1. Assuming fixed

population size and  soft selection, the final form of the expectation values is given substi−

tuting np for x1 and n(1−p)  for x2=n−x1  (the factor of n in the numerator and denomina−

tor cancels):H7L E@p Ht + 1LD =

p Μ1�������������������������������������
p Μ1 + H1 - pL Μ2

-
H1 - pL p HΜ2 Σ1

2 - Μ1 Σ2
2L

�������������������������������������������������������
n Hp Μ1 + H1 - pL Μ2L3

The mean change in allele frequency is just the difference between E[p(t+1)] and p,

which givesH8L M  HpL = E@p Ht + 1LD - p =

p H1 - pL HΜ1 - Μ2L
��������������������������������������������
p Μ1 + H1 - pL Μ2

-
H1 - pL p HΜ2 Σ1

2 - Μ1 Σ2
2L

�������������������������������������������������������
n Hp Μ1 + H1 - pL Μ2L3

The first term in the expression represents the rate of change in allele frequency due to

differences in mean fitness (the "deterministic" term) while the second term represents

the selection differential on offspring variance.

In the limit  where the variance values Σ2 are all small and the mean values Μ are

close to unity the above expression can be further simplified to the M(p) term of

Gillespie (1974), 

H9L M  HpL » p H1 - pL JHΜ1 - Μ2L -
Σ1
2 - Σ2

2
�����������������

n
N.

However, these conditions are seldom met in simulations (or in nature) so that equation

(8) typically provides a better fit  than equation (9) (Proulx 2000, and compare to Shpak

2005).

M(p) is the directional component in the diffusion approximation, i.e. the Kol−

mogorov backward equation (e.g. Kimura 1964, Crow and Kimura 1970, Ewens 1978)
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H10L ¶ Φ
���������
¶t

= M  HpL 
¶ Φ
���������
¶p

+
V  HpL
��������������

2
 

¶2 Φ
�����������
¶p2

Unlike genetic drift, variance in offspring number within generations contributes both to

the directional term M(p) and to the diffusion coefficient V(p), where V(p) is the vari−

ance in the change of allele frequency, i.e. H11L V  HpL = E@Hp Ht + 1L - p HtLL2D =
E@p2  Ht + 1LD - 2 p E@p Ht + 1LD + p2

The first quadratic term from the above is calculated

H12L p2  Ht + 1L =
HÚi=1

x1 HΜ1 + Ξ1@iDLL2

�������������������������������������������������������������������������������������������HÚi=1
x1 HΜ1 + Ξ1@iDL + Úi=1

x2 HΜ2 + Ξ2@iDLL2

applying the same substitutions of variables and the same assumptions about the scaling

of the mean and variance terms, the expectation of the second moment is:

H13L E@p2  Ht + 1LD =
n2 p2 Μ1

2
�����������������������������������������������������Hn p Μ1 + n H1 - pL Μ2L2 -

p H3 p Μ1 - H1 - pL Μ2L Σ1
2

���������������������������������������������������������
n Hp Μ1 + H1 - pL Μ2L3 +

3 p2 Μ1
2 H p Σ1

2 + H1 - pL Σ2
2L2

����������������������������������������������������������������
n H p Μ1 + H1 - pL Μ2L4

combining with the known expression for E[p(t+1)] and simplifying, the variance in

change of allele frequency is
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H14L V  HpL =

n2 p2 Μ1
2

�����������������������������������������������������Hn p Μ1 + n H1 - pL Μ2L2 -

p H3 p Μ1 - H1 - pL Μ2L Σ1
2

���������������������������������������������������������
n Hp Μ1 + H1 - pL Μ2L3 +

3 p2 Μ1
2 H p Σ1

2 + H1 - pL Σ2
2L2

����������������������������������������������������������������
n H p Μ1 + H1 - pL Μ2L4 -

2 p ikjj p Μ1�������������������������������������
p Μ1 + H1 - pL Μ2

-
H1 - pL p HΜ2 Σ1

2 - Μ1 Σ2
2L

�������������������������������������������������������
n Hp Μ1 + H1 - pL Μ2L3

y{zz + p2

Again, with small variances and mean numbers of offspring near unity, this was shown

in Proulx (2000) to simplify to the expression for V(p) in Gillespie (1974):

H15L V  HpL »
p H1 - pL
���������������������

2 N
 HH1 - pL Σ1

2 + pΣ2
2L

Given the first and second moments M(p), V(p), the Kolmogorov backward

equation (10) can be solved for the fixation probability of an allele with initial frequency

p (e.g. Kimura 1964), H16L
U  HpL =

Ù
0

p
Exp@-Ù2 M  HxL�����������V  HxL  âxD âx

��������������������������������������������������������Ù
0

1
Exp@-Ù2 M  HxL�����������V  HxL  âxD âx

=

Ù
0

pHH1 - xL Σ1
2 + xΣ2

2L2 I N HΜ1 -Μ2 L��������������������
Σ1
2 -Σ2

2 -1M
âx

������������������������������������������������������������������������������Ù
0

1HH1 - xL Σ1
2 + xΣ2

2L2 I N HΜ1 -Μ2 L��������������������
Σ1
2 -Σ2

2 -1M
âx

The fixation probabilities of alleles that give different means and variances in

offspring numbers have been analyzed for various parameters and found to be consistent

with  the fixation probabilities obtained from individual based simulation results in

Shpak (2005). 

The most significant results in the single deme model follow directly from (1),

namely, that for nearly equal arithmetic mean numbers of offspring per generation, the

genotype that produces the smaller variance in offspring number will  be favored by

selection. Furthermore, in the case where Μ1 is  larger than Μ2 and Σ2
2 is smaller than Σ1

2,

there will  be a critical population size ǹ at which the two alleles have equal fitness (and

consequently, population sizes n<ǹ will  favor the lower mean, higher variance strategy

versus larger population sizes ǹ<n corresponding to selection in favor of the first). This

critical population size is calculated by setting both sides of (1) equal to one another:
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Σ2
2 - Σ1

2
�����������������
Μ1 - Μ2

This relationship between population size and clutch average/variance becomes

less straightforward in the context of a metapopulation. If  instead of a single, isolated

deme, there are multiple demes exchanging migrants with one another, it seems apparent

that the effective population size from the standpoint of selection on offspring variance

will  depend on deme structure and migration rate. For instance, in the absence of spatial

structure, if there are D demes of n individuals, one would expect that for very low migra−

tion rates the effective fitness of a strategy would be approximated by  Μ− Σ2
��������n   (nearly

independent demes) while for very high migration rates (approaching complete mixing)

the effective fitness would be closer to Μ− Σ2
��������nD   (complete mixing in the metapopulation),

with values in the denominator between n and Dn for intermediate migration rates. This

suggests that for values of Μ and Σ2  such that n<ǹ and ǹ<nD, there should also be a

critical value of migration rate at which a high variance, lower mean strategy starts to be

disfavored by selection.

This problem was investigated using individual based simulations in  Shpak

(2005). It  was found that for the metapopulation scenario described above, with D

demes with n individuals, each of which exchanges a fraction m/(D−1)  with every neigh−

bor, under certain cases there was indeed a critical value of m at which a strategy disfa−

vored in a single deme of size n<ǹ (i.e. higher mean, high variance) begins to be favored

due to the effects of a greater "effective" population size under higher migration.

Significantly, it  was found that migration only had this effect on selection for

variance in a metapopulation if  it  occurred after reproduction but prior to selection. If

reproduction and selection took place within individual demes and was followed by

migration of post−selection  adults, there was no effect and whatever strategy was

favored in the individual demes in the absence of selection remained so even for high

migration rates. The heuristic argument for why this is the case is that in the latter life

cycle (Birth®Selection®Migration), the entire sampling process takes place within each

deme, so that migration only accomplishes a "mixing" (and subsequent homogenization)

of allele frequencies. In contrast, for the first life cycle (Birth®Migration®Selection),

the pool of offspring that contribute to a given deme are sampled from the entire metapo−

pulation, so that the effective sample variance depends on the contribution across demes

as well as within demes in every generation.

Below, derivations of M(p) are presented for spatially unstructured metapopula−

tions for two different life cycles. The derivations essentially follow the methods used in

deriving equations (8−9)  above (apart from the introduction of factors of (1−m)  for

"residents" and m for "migrants" for every deme and its neighbors). The expressions for

the expected change in allele frequency are consistent with the numerical results and

heuristic arguments in Shpak (2005), where it was argued that under certain life cycles

(namely, Birth®Selection®Migration) the selection dynamics were essentially indepen−

dent of both deme number and migration rate, while a life cycle where migration pre−

cedes selection gives the intuitive result where high migration rates and large numbers

of demes reduce the effect of offspring variance.
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Expected Change in Allele Frequency in Metapopulations

The life cycle of an organism in a metapopulation can be broken down into the

processes of migration, reproduction (birth), and natural selection. Here we assume that

selection is assumed to be soft (e.g. Wallace 1970), so that the population size of any

deme is held fixed at n. The fixed population size acts as a "normalization" in every

generation. As in the single deme case, genetic drift  is not explicitly considered (i.e.

there is no variance contribution due to sampling of n offspring in each deme to main−

tained fixed population size). Reproduction is again described by every genotype in the

ith deme producing Μ+Ξi=Μ+Εz progeny, so that the random variable describing off−

spring number variance scales as Ε<<1.

A  number of  additional approximations are made in  deriving the expected

change in allele frequency in these model systems. For both the Birth®Selection®Migra−

tion (BMS) and Migration®Selection®Birth (MSB) life  cycles, the contribution of

migrants in each deme is approximated as a proportion mx��  (i.e. the average number of

alleles of the first type in the metapopulation). This assumes that there is a sample pool

of migrants from all demes which then migrate at random (so that migrants from a given

deme can in principle return to the parental deme). While this is a reasonable assump−

tion for certain instances of a BMS life cycle (for instance, broadcast spawning marine

organisms), it less realistic as an exact model for metapopulations under BSM. 

In the BSM life cycle, it  is adults (or at least some age class at which density

dependence does not strongly act) that migrate. It is unrealistic to assume a "broadcast

and random return" form of migration in this case, so that in actuality each deme only

receives migrants from the D−1  other demes in the population (or from nearest neigh−

bors if  there is spatial structure). However, treating migration in BSM as a pooled effect

is a reasonable approximation when D is very large and/or allele frequencies do not

greatly differ across demes. Furthermore, since in the BSM life cycle migration will  be

shown to be irrelevant to the effects of offspring variance, the results pertinent to the

question of effective population size and fitness of a strategy are qualitatively the same

regardless.

It should also be noted that an BSM life cycle is biologically equivalent to MBS

and SMB since the events occur cyclically and in sequence (with the same reasoning

applicable to BMS versus MSB, SBM). In the actual calculations, differences in starting

point correspond to different stage of the life cycle at the census point. So while the

formal expressions may differ for various choices of census point, it  is rather obvious

that the relations between terms do not change since the same processes are involved.
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alleles of the first type in the metapopulation). This assumes that there is a sample pool

of migrants from all demes which then migrate at random (so that migrants from a given

deme can in principle return to the parental deme). While this is a reasonable assump−

tion for certain instances of a BMS life cycle (for instance, broadcast spawning marine

organisms), it less realistic as an exact model for metapopulations under BSM. 

In the BSM life cycle, it  is adults (or at least some age class at which density

dependence does not strongly act) that migrate. It is unrealistic to assume a "broadcast

and random return" form of migration in this case, so that in actuality each deme only

receives migrants from the D−1  other demes in the population (or from nearest neigh−

bors if  there is spatial structure). However, treating migration in BSM as a pooled effect

is a reasonable approximation when D is very large and/or allele frequencies do not

greatly differ across demes. Furthermore, since in the BSM life cycle migration will  be

shown to be irrelevant to the effects of offspring variance, the results pertinent to the

question of effective population size and fitness of a strategy are qualitatively the same

regardless.

It should also be noted that an BSM life cycle is biologically equivalent to MBS

and SMB since the events occur cyclically and in sequence (with the same reasoning

applicable to BMS versus MSB, SBM). In the actual calculations, differences in starting

point correspond to different stage of the life cycle at the census point. So while the

formal expressions may differ for various choices of census point, it  is rather obvious

that the relations between terms do not change since the same processes are involved.

� Birth®Selection®Migration Life Cycle

Consider first the life cycle where the sequence of events is birth®selection®

migration (BSM). In the absence of spatial structure, every deme sends a proportion m

of its population to each of the remaining D−1  demes. The change in the number of

individuals of the first genotype x in the it deme due to migration is estimated as

xi  Ht + 1L = H1 - mL xi + m x�,

where x��= 1�����D  Ú j=1
D x j  . 

In exact terms, this corresponds to the case where every deme contributes a

fraction m to a common migrant pool that is then divided up between the D demes (so

that some of the "migrants" return to the parental population). A more realistic model

(particularly for a life cycle where adults migrate) is one where the migrants can only

move to neighboring demes. This mode of migration is represented by
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xi  Ht + 1L = H1 - mL xi +
m

������������
D - 1

 â
j¹i

xj

(i.e. deme i sends fraction m to all of the D−1  other demes and receives migrants from

the other demes in same ratios). Describing migration in terms of metapopulation mean

x��  is an inexact but reasonable estimate if  there is minimal difference in allele frequency

between demes  or if the number of demes is large (see above).

The frequency of the first allele in the ith deme after reproduction, selection, and

migration isH18L pi  Ht + 1L =

m 
x� Μ1 + Ε Úi=1

x1 z1@iD
�����������������������������������������������������������������������������������������������������������������H x� Μ1 + Hn - x�L Μ2 + Ε HÚi=1

x1 z1@iD + Úi=1
x2 z2@iDLL +

H1 - mL 
Hxi Μ1 + Ε Úi=1

x1 z1@iDL
�������������������������������������������������������������������������������������������������������������������Hxi Μ1 + Hn - xiL Μ2 + Ε HÚi=1

x1 z1@iD + Úi=1
x2 z2@iDLL

Writing a series expansion in terms of the first and second powers of  Ε, p(t+1) is

approximated by
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H19L m x� Μ1��������������������������������������
x� Μ1 + n Μ2 - x� Μ2

+
H1 - mL xi Μ1�������������������������������������������

xi Μ1 + n Μ2 - xi Μ2
+

Ε ikjjm ikjj S@z1, x�D
��������������������������������������
x� Μ1 + n Μ2 - x� Μ2

-
x� HS@z1, x�D + S@z2, n - x�DL Μ1�����������������������������������������������������������������������Hx� Μ1 + n Μ2 - x� Μ2L2

y{zz +

H1 - mL ikjj S@z1, xiD
�������������������������������������������
xi Μ1 + n Μ2 - xi Μ2

-HS@z1, xiD + S@z2, n - xiDL xi Μ1�����������������������������������������������������������������������������Hxi Μ1 + n Μ2 - xi Μ2L2
y{zzy{zz +

Ε2 ikjjm ikjj x� HS@z1, x�D + S@z2, n - x�DL2 Μ1�������������������������������������������������������������������������Hx� Μ1 + n Μ2 - x� Μ2L3 -

S@z1, x�D HS@z1, x�D + S@z2, n - x�DL
����������������������������������������������������������������������������������Hx� Μ1 + n Μ2 - x� Μ2L2

y{zz +

H1 - mL ikjj HS@z1, xiD + S@z2, n - xiDL2 xi Μ1�������������������������������������������������������������������������������Hxi Μ1 + n Μ2 - xi Μ2L3 -

S@z1, xiD HS@z1, xiD + S@z2, n - xiDL
����������������������������������������������������������������������������������������Hxi Μ1 + n Μ2 - xi Μ2L2

y{zzy{zz
where S[z,x]=Úi=1

x z@iD. 
Collecting terms with  the same coefficients and applying the relationships

cov(z1[i],z1[j])=0,  cov(z1[i],z2[j]),  and HÚi=1
x z@iDL2 = xΣ2 � Ε2 , together with the

substitutions x1=np, x2=n(1−p),   x��=np��, the final form for M(pi), the change in allele

frequency across a generation, is the difference between the expectation of (19) and pi .H20L M  HpiL =J m p� Μ1������������������������������������������
p� Μ1 + H1 - p� L Μ2

+
H1 - mL pi��������������������������������������������

pi Μ1 + H1 - pi L Μ2
- piN +ikjj m H1 - p�L p� Μ1 H Μ2 Σ1

2 + Μ1 Σ2
2L

��������������������������������������������������������������������
n H p� Μ1 + H1 - p�L Μ2L3 +H1 - mL pi  H1 - piL HΜ2  Σ1

2 + Μ1 Σ2
2L

�����������������������������������������������������������������������������
n H pi Μ1 + H1 - pi L Μ2L3

y{zz
Comparing (20) with the single deme equations (7), it can be seen that the terms in the

first set of square brackets represent the "deterministic" change in allele frequency due

to differences in allele frequency across demes, and, as in the single deme case, direc−

tional selection due to mean differences in fitness between the two alleles. The terms in

the second set of square brackets represent selection on variance, which is largely inde−

pendent of migration in this life cycle except for differences in relative frequency. When

pi=p�� (allele frequencies equal in all demes), the above expression reduces to an equa−

tion that is identical to (7−8),  which is independent of the migration rate m because

every p�� = pi  term with a factor of m has a complement pi  factor of (1−m),

TPBMS.nb 14
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to differences in allele frequency across demes, and, as in the single deme case, direc−

tional selection due to mean differences in fitness between the two alleles. The terms in

the second set of square brackets represent selection on variance, which is largely inde−

pendent of migration in this life cycle except for differences in relative frequency. When

pi=p�� (allele frequencies equal in all demes), the above expression reduces to an equa−

tion that is identical to (7−8),  which is independent of the migration rate m because

every p�� = pi  term with a factor of m has a complement pi  factor of (1−m),H21L M  HpiL =

pi H1 - piL HΜ1 - Μ2L
��������������������������������������������������
pi Μ1 + H1 - pi L Μ2

+
pi  H1 - piL HΜ2  Σ1

2 + Μ1 Σ2
2L

�������������������������������������������������������������
n H pi Μ1 + H1 - pi L Μ2L3 .

Consequently, the selection dynamics defined by M(p) in a metapopulation of D

demes of size n under the BSM life cycle are identical to that within a single deme of

size n, regardless of migration rate. Migration only contributes to M(p) due to frequency

differences between demes, not because of the accumulation of variance across demes.

This can be seen from the fact that in (21) the variance terms scale inversely with n (as

for a single deme) independent of migration rate and the total number of demes, so that

the effective fitness of a strategy remains Μ− Σ2
��������n .   Even when there are differences in

allele frequencies across demes, the selection on variance is still of the order Σ2
��������n , with

the only difference being that of an allelic (additive) variance factor of pi(1−pi)
Σ2
��������n   ver−

sus the migration weighted term (mp��(1−p��)+(1−m)pi(1−pi))
Σ2
��������n .

That migration only contributes to change in allele frequency when pi ¹p�� can be

seen in substituting the limiting cases of  m=0 (no migration) and m=1 (complete mix−

ing) into (20), which give, respectively,
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H22. aL pi H1 - p1L HΜ1 - Μ2L
��������������������������������������������������
pi Μ1 + H1 - piL Μ2

+

pi  H1 - piL HΜ2  Σ1
2 + Μ1 Σ2

2L
�������������������������������������������������������������
n H pi Μ1 + H1 - pi L Μ2L3

H22. bL p� H1 - p�L HΜ1 - Μ2L
��������������������������������������������
p� Μ1 + H1 - p� L Μ2

+
H1 - p�L p� Μ1 H Μ2 Σ1

2 + Μ1 Σ2
2L

����������������������������������������������������������������
n H p� Μ1 + H1 - p�L Μ2L3

which differ only in the relative roles of pi , p
��  and not in the value of the denominator

term associated with Σ2. Thus, selection can still act on the variance in offspring num−

ber even in populations that appear to be very large.

� Birth®Migration®Selection Life Cycle

As was noted in the introduction, if  reproduction in every deme is followed by

migration prior to selective culling, the evolutionary dynamics are quite different from

the BSM life cycle, because the offspring sample variance will  be reduced by contribu−

tions from every deme. It is expected that this will  be reflected in the form of M(pi) for

the BMS life cycle, since the normalization of allele counts (representing soft selection)

is done over absolute frequencies across as well as within demes.

Following the same logic as in the last derivations, the frequency of the first

allele at the end of the BMS life cycle isH23L pi  Ht + 1L =Jm Jx� Μ1 +
Ε S@z1, D x�D
������������������������������

D
N + H1 - mL Hxi Μ1 + Ε S@z1, xiDLN �Jm Jx� Μ1 +

Ε S@z2, D x�D
������������������������������

D
N + H1 - mL Hxi Μ1 + Ε S@z1, xiDL +

m JHn - x�L + Μ2  
Ε S@z2, D Hn - x�LD
�������������������������������������������

D
N +H1 - mL HHn - xiL Μ2 + Ε S@z2, n - xiDLN

Here migration is also assumed to occur via the "mixing" used in the previous deriva−

tions, i.e. all demes contribute a certain fraction of their offspring to a migrant pool

which then distributes at random across all demes (allowing for return migration and

thus the characterization of the migrant pool as an average x��). It will  be shown that for

this life cycle, the number of alleles in the entire metapopulation Dx�� contributes to the

variance component in every deme.

To calculate the change in pi  in terms of offspring variance, (23) is expanded as

a power series up to second order in terms of Ε, 
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tions, i.e. all demes contribute a certain fraction of their offspring to a migrant pool
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thus the characterization of the migrant pool as an average x��). It will  be shown that for

this life cycle, the number of alleles in the entire metapopulation Dx�� contributes to the

variance component in every deme.

To calculate the change in pi  in terms of offspring variance, (23) is expanded as

a power series up to second order in terms of Ε, H24L
m x� Μ1 + xi Μ1 - m xi Μ1���������������������������������������������������������������������������������������������������������������������������������

m x� Μ1 + H1 - mL xi Μ1 + m Hn - x� L Μ2 + H1 - mL Hn - xiL Μ2
+

Ε JJ m S@z1, D x�D
������������������������������

D
+ H1 - mL S@z1, xiDN � Hm x� Μ1 +H1 - mL xi Μ1 + m Hn - x� L Μ2 + H1 - mL Hn - xiL Μ2L -JJ m S@z1, D x�D

������������������������������
D

+ S@z1, xiD - m S@z1, xiD +

m S@z2, D Hn - x�LD
�������������������������������������������

D
+ S@z2, n - xiD -

m S@z2, n - xiDN Hm x� Μ1 + H1 - mL xi Μ1LN �Hm x� Μ1 + H1 - mL xi Μ1 + m Hn - x� L Μ2 +H1 - mL Hn - xiL Μ2L2N +

Ε2 ikjjikjjJ m S@z1, D x�D
������������������������������

D
+ S@z1, xiD - m S@z1, xiD +

m S@z2, D Hn - x�LD
�������������������������������������������

D
+ s@z2, n - xiD -

m S@z2, n - xiDN2 Hm x� Μ1 + H1 - mL xi Μ1Ly{zz �Hm x� Μ1 + H1 - mL xi Μ1 + m Hn - x� L Μ2 +H1 - mL Hn - xiL Μ2L3 -JJ m S@z1, D x�D
������������������������������

D
+ S@z1, xiD - m S@z1, xiDN
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J m S@z1, D x�D
������������������������������

D
+ S@z1, xiD -

m S@z1, xiD +
m S@z2, D Hn - x�LD
�������������������������������������������

D
+

S@z2, n - xiD - m S@z2, n - xiDNN �Hm x� Μ1 + H1 - mL xi Μ1 + m Hn - x� L Μ2 +H1 - mL Hn - xiL Μ2L2y{zz
M(pi) is the difference between the expectation of the above expression and pi . Apply−

ing the variance and covariance relations and substituting np=x1, n(1−p)=x2,  np��=x��, the

expression becomes:H25L M  HpiL =
m p� Μ1 + H1 - mL pi Μ1�������������������������������������������������������������������������������������������������������������������������������

m p� Μ1 + H1 - mL pi Μ1 + m H1 - p�L Μ2 + H1 - mL H1 - pi L Μ2
-

J m2 p� Σ1
2

�����������������
D

- H1 - mL2  pi Σ1
2N � n Hm p� Μ1 + H1 - mL pi Μ1 +

m H1 - p�L Μ2 + H1 - mL H1 - pi L Μ2L2 +JHm p� Μ1 + H1 - mL pi Μ1L J m2 n p� Σ1
2

���������������������
D

+ H1 - mL2 n pi Σ1
2 +

m2 H1 - p�L Σ2
2

�������������������������������
D

+ H1 - mL2 H1 - piL Σ2
2NN � n Hm p� Μ1 + H1 - mL pi Μ1 + m H1 - p�L Μ2 +H1 - mL H1 - pi L Μ2L3 - pi

In the case where allele frequencies are equal (pi=p��) across all demes, the mean change

in frequency simplifies to

H26L M  HpiL =
pi H1 - p1L HΜ1 - Μ2L

������������������������������������������������
pi Μ1 + H1 - pi L Μ2

-

JH1 - mL2 pi Σ1
2 +

m2 pi Σ1
2

��������������������
D

N � n Hpi Μ1 + H1 - pi L Μ2L2 +J pi Μ1 JH1 - mL2 pi Σ1
2 +

m2 pi Σ1
2

��������������������
D

+ H1 - mL2 H1 - piL Σ2
2 +

m2 H1 - piL Σ2
2

���������������������������������
D

NN � n Hpi Μ1 + H1 - pi L Μ2L3

It is apparent that the above expression is not equivalent to M(p) for a single deme (Eq.

7). Even when allele frequencies are equal across demes, migration has the indirect

effect of reducing variance by sampling from the pool of offspring throughout the metap−

opulation. 

In the limiting cases of m=0 and m=1, the respective values of M(pi) are 
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It is apparent that the above expression is not equivalent to M(p) for a single deme (Eq.

7). Even when allele frequencies are equal across demes, migration has the indirect

effect of reducing variance by sampling from the pool of offspring throughout the metap−

opulation. 

In the limiting cases of m=0 and m=1, the respective values of M(pi) are H27. aL H1 - piL pi HΜ1 - Μ2L
�����������������������������������������������
pi Μ1 + H1 - piL Μ2

-

pi Σ1
2

�����������������������������������������������������
n Hpi Μ1 + H1 - piL Μ2L2 +

pi Μ1 Hpi Σ1
2 + H1 - piL Σ2

2L
������������������������������������������������������������
n Hpi Μ1 + H1 - piL Μ2L3

H27. bL H1 - p�L p� HΜ1 - Μ2L
�������������������������������������������
p� Μ1 + H1 - p�L Μ2

-

p� Σ1
2

�����������������������������������������������������
D n Hp� Μ1 + H1 - p�L Μ2L2 +

p� Μ1 Hp� Σ1
2 + H1 - p�L Σ2

2L
�����������������������������������������������������
Dn Hp� Μ1 + H1 - p�L Μ2L3

For a BMS life  cycle then, migration rate determines the effective population

size "seen" by selection acting on offspring variance. When m=0, each deme is indepen−

dent of the others, so that M(p) is the same as (7) for a single deme (i.e. n in the denomi−

nator of the variance terms). When m=1 (corresponding to a case of complete mixing),

the denominator is nD, the total metapopulation size. In contrast with BSM, even when

pi=p��, it can be seen that (27.a) and (27.b) are obviously not equivalent: one has a vari−

ance component that scales with deme size n, the other with metapopulation size. 

These results are largely consistent with the numerical findings in Shpak (2005)

for the limiting cases. On heuristic grounds, it was argued that the effective population

size (denominator of the variance terms in M(p)) would scale as (1−m)n+mDn,  as a

function of migration rate. The form of equation  25 suggests that the relationship is

actually more complicated for intermediate values of m.  The variance contributions to

M(p) actually scale as functions of the squares of migration rates, with n in the denomina−

tor for "residents" and nD for the "migrants,"
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actually more complicated for intermediate values of m.  The variance contributions to

M(p) actually scale as functions of the squares of migration rates, with n in the denomina−

tor for "residents" and nD for the "migrants,"

H28L H1 - mL2 pi Σ1
2

���������������������������������
n

+
m2 p� Σ1

2
������������������

nD

if  this is compared to pΣ2

����������n  for a single deme, then it can be argued that migration in the

BMS model induces an effective population size from the standpoint of selection for

variance, so that

H29L pΣ2
���������
ne

=
H1 - mL2 pi Σ1

2
���������������������������������

n
+
m2 p� Σ1

2
������������������

nD

Ignoring the effects of frequency differences between demes and setting p��=pi=p,

H30L ne »
nD

����������������������������������
D H1 - mL2 + m2

,

which increases towards nD as m approaches unity and decreases towards n as m

approaches 0.  This yields the prediction that if  Μ1<Μ2, Σ1
2<Σ2

2 and n is small enough so

that Μ2 - Σ2
2

�����n < Μ1 - Σ1
2

�����n ,  for sufficiently many demes and a high enough migration

rate there will  be a critical value m such that ne  in (30) satisfies Eq. 17 (i.e. the strategy

with higher effective fitness at zero or low migration is disfavored at high migration

rates because the selection against variance is less pronounced in a higher effective popu−

lation size). We explore this theme further in the discussion.

The sign of  M(p)  determines whether an allele is expected to increase or

decrease in frequency given a set of parameters (describing mean and variance in off−

spring number, population size, and migration rate). Since there is no frequency depen−

dence, M(p) has the same sign for any value of p, so that if  M(p)>0, the first allele is

favored by selection, while M(p)<0 implies that the second allele is favored. The value

and sign of M(p) in itself does not provide sufficient information to predict the probabil−

ity of loss or fixation, however, since there is a stochastic contribution to the dynamics

represented by the diffusion term V(p). Rather, consideration of V(p) allows us to infer

relative fixation probabilities and qualitatively describe evolutionary trajectories (Proulx

and Day 2001, Nowak 2004, Wild and Taylor 2004). 

The derivations of V(pi) for a metapopulation are relegated to the Appendix. It

should be noted that a complete description of fixation probabilities in a finite popula−

tion would also incorporate the contribution of genetic drift proper to V(p) (e.g. Proulx

2000), which would add binomial sampling probabilities to the already involved equa−

tions for offspring variance. In the appendix, V(p) is only calculated for the stochastic

contribution of clutch size variance.
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rates because the selection against variance is less pronounced in a higher effective popu−

lation size). We explore this theme further in the discussion.

The sign of  M(p)  determines whether an allele is expected to increase or

decrease in frequency given a set of parameters (describing mean and variance in off−

spring number, population size, and migration rate). Since there is no frequency depen−

dence, M(p) has the same sign for any value of p, so that if  M(p)>0, the first allele is

favored by selection, while M(p)<0 implies that the second allele is favored. The value

and sign of M(p) in itself does not provide sufficient information to predict the probabil−

ity of loss or fixation, however, since there is a stochastic contribution to the dynamics

represented by the diffusion term V(p). Rather, consideration of V(p) allows us to infer

relative fixation probabilities and qualitatively describe evolutionary trajectories (Proulx

and Day 2001, Nowak 2004, Wild and Taylor 2004). 

The derivations of V(pi) for a metapopulation are relegated to the Appendix. It

should be noted that a complete description of fixation probabilities in a finite popula−

tion would also incorporate the contribution of genetic drift proper to V(p) (e.g. Proulx

2000), which would add binomial sampling probabilities to the already involved equa−

tions for offspring variance. In the appendix, V(p) is only calculated for the stochastic

contribution of clutch size variance.

Discussion

There are a several potentially important consequences of selection on variance

of offspring production in metapopulations. That the effective fitness of a strategy where

there is variance in clutch size depends on population size was established by Gillespie

(1974), so it stands to reason that population processes that lead to differences between

census size and "effective" population size (such as density fluctuations, differences in

frequency between the sexes, (see Proulx 2000) can lead to differences in the selective

advantage of a strategy with a given mean and variance. 

Migration and population structure are known to cause a discrepancy between

census and effective population size from the standpoint of genetic drift (e.g. Whitlock

and Barton 1997), which might suggest that other sources of variance would be influ−

enced by subdivision. It  is interesting that these effects turn out to depend on the

sequence of events in an organism’s life cycle, i.e. whether reproduction and selection

take place within demes prior to migration or whether migration occurs after reproduc−

tion but before selective culling. In the BSM life cycle, the effective population size of a

deme is essentially equal to its census size, while for BMS, the effective size of a deme

(and for that matter, the entire metapopulation as an average of behavior across demes)

ranges from the census size of a deme to the census size of a metapopulation.

What this suggests is that the influence of offspring variance on the performance

of a given strategy cannot necessarily be ignored even in large populations. Tradition−

ally, the significance of equations (8−9)  was considered by many to be of only aca−

demic interest on the grounds that most biological populations were large enough for

sample variance to play a minor role. What the results in this paper show is that even in

a large metapopulation with extensive mixing, if  the life cycle BSM and the population

consists of many small demes, the effect of offspring variance is essentially the same as

it  would be for a single small deme. Consequently, the impact of offspring variance

must be assessed on a case by case basis, depending on life cycle and population struc−

ture as well as the fitness and variance parameters.

In other words, if  there is a trade−off   between producing a high mean number

of offspring and reducing variance (as in the semelparous vs. iteroparous regimes men−

tioned in the introduction),  the outcome of selection will  depend not only on the census

number in the population, but on life cycle and migration rate. Using the semelparity

and iteroparity examples, an organism that reproduces once and produces an average of

on clutch k1=1 of Ω1=10 offspring that survive (as a whole clutch) with a probability of

Π=0.1 and fail with a probability of 1−Π=0.9  has a mean fitness Μ1=k1Ω1Π=1 and vari−

ance Σ1
2=k1Ω1

2Π(1−Π)=9.  If  it competes against an iteroparous strategy that produces a

k2=10 clutches of Ω2=1 single offspring (with the probability of surviving Π=0.1), the

parameters are Μ2=0.9 and Σ2
2=0.81. 

Equation (17) predicts that for a population size n<81.9 the iteroparous strategy

will  be favored in spite of having a lower arithmetic mean. If  the selection takes place in

the context of a metapopulation with D=10 demes with n=50 individuals per deme, the

iteroparous strategy will  always be favored in BSM life cycle regardless of migration

rate. 

In a BMS life cycle, there will  be a critical value of migration rate at which the

higher mean semelparous strategy starts to be favored. This critical value can be approxi−

mated as the value of m that gives ne = 81.9 in Eq. (30), with n=50 and D=10. Solving

the quadratic equation for m, the root less then unity is m=0.2218. This corresponds

reasonably well with the individual based simulations in Shpak (2005), where the proba−

bility  of fixing  the iteroparous strategy (with initial  frequency p=0.5) was near 50%

when there were between 1 and 2 migrants exchanged between any pair of demes

(corresponding to effective neutrality for some value of m between 0.2 and 0.4). The

simulations include effects of genetic drift, but (30) still gives a much better estimate of

the critical migration rate than the linear estimate in Shpak 2005.

These results predict broad trends in the evolution of life histories and reproduc−

tive strategies in various organisms. Since for the same mean value of offspring an iterop−

arous strategy produces a lower variance in surviving progeny than a semelparous strat−

egy, it  is predicted that semelparity should be less common in organisms with small

population sizes, or in highly structured populations when the life cycle is of the BSM

type. For a large population or a metapopulation of organisms with a BMS life cycle, the

penalty for high variance is lower and semelparity should be more common, particularly

if  the semelparous strategy can produce a higher mean number of offspring.

At  a practical level, this means that one would expect semelparity to be more

common among organisms where the most incoming migrants to any deme are juveniles

and the most important selection takes place after migration. This is the case with broad−

cast spawning marine invertebrates, many of which have large, widely distributed metap−

opulations that exchange migrants via planktonic eggs and larvae, and with plants that

disperse seeds over long distances. Semelparity would probably be more prevalent in

such organisms than in (for example) birds or large mammals, where most of the migra−

tion between demes is by adults that have already been subjected to an entire life of

selection. 

The trade−offs  involved in determining reproductive strategy are often more

complicated than a balance between mean and variance (for example, a balance between

adult and juvenile mortality, as discussed by Charnov and Schaffer 1973) , but the

effects of offspring variance on the fitness of a genotype are potentially strong enough

for this to be an important factor in many animal and plant populations.
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There are a several potentially important consequences of selection on variance

of offspring production in metapopulations. That the effective fitness of a strategy where

there is variance in clutch size depends on population size was established by Gillespie

(1974), so it stands to reason that population processes that lead to differences between

census size and "effective" population size (such as density fluctuations, differences in

frequency between the sexes, (see Proulx 2000) can lead to differences in the selective

advantage of a strategy with a given mean and variance. 

Migration and population structure are known to cause a discrepancy between

census and effective population size from the standpoint of genetic drift (e.g. Whitlock

and Barton 1997), which might suggest that other sources of variance would be influ−

enced by subdivision. It  is interesting that these effects turn out to depend on the

sequence of events in an organism’s life cycle, i.e. whether reproduction and selection

take place within demes prior to migration or whether migration occurs after reproduc−

tion but before selective culling. In the BSM life cycle, the effective population size of a

deme is essentially equal to its census size, while for BMS, the effective size of a deme

(and for that matter, the entire metapopulation as an average of behavior across demes)

ranges from the census size of a deme to the census size of a metapopulation.

What this suggests is that the influence of offspring variance on the performance

of a given strategy cannot necessarily be ignored even in large populations. Tradition−

ally, the significance of equations (8−9)  was considered by many to be of only aca−

demic interest on the grounds that most biological populations were large enough for

sample variance to play a minor role. What the results in this paper show is that even in

a large metapopulation with extensive mixing, if  the life cycle BSM and the population

consists of many small demes, the effect of offspring variance is essentially the same as

it  would be for a single small deme. Consequently, the impact of offspring variance

must be assessed on a case by case basis, depending on life cycle and population struc−

ture as well as the fitness and variance parameters.

In other words, if  there is a trade−off   between producing a high mean number

of offspring and reducing variance (as in the semelparous vs. iteroparous regimes men−

tioned in the introduction),  the outcome of selection will  depend not only on the census

number in the population, but on life cycle and migration rate. Using the semelparity

and iteroparity examples, an organism that reproduces once and produces an average of

on clutch k1=1 of Ω1=10 offspring that survive (as a whole clutch) with a probability of

Π=0.1 and fail with a probability of 1−Π=0.9  has a mean fitness Μ1=k1Ω1Π=1 and vari−

ance Σ1
2=k1Ω1

2Π(1−Π)=9.  If  it competes against an iteroparous strategy that produces a

k2=10 clutches of Ω2=1 single offspring (with the probability of surviving Π=0.1), the

parameters are Μ2=0.9 and Σ2
2=0.81. 

Equation (17) predicts that for a population size n<81.9 the iteroparous strategy

will  be favored in spite of having a lower arithmetic mean. If  the selection takes place in

the context of a metapopulation with D=10 demes with n=50 individuals per deme, the

iteroparous strategy will  always be favored in BSM life cycle regardless of migration

rate. 

In a BMS life cycle, there will  be a critical value of migration rate at which the

higher mean semelparous strategy starts to be favored. This critical value can be approxi−

mated as the value of m that gives ne = 81.9 in Eq. (30), with n=50 and D=10. Solving

the quadratic equation for m, the root less then unity is m=0.2218. This corresponds

reasonably well with the individual based simulations in Shpak (2005), where the proba−

bility  of fixing  the iteroparous strategy (with initial  frequency p=0.5) was near 50%

when there were between 1 and 2 migrants exchanged between any pair of demes

(corresponding to effective neutrality for some value of m between 0.2 and 0.4). The

simulations include effects of genetic drift, but (30) still gives a much better estimate of

the critical migration rate than the linear estimate in Shpak 2005.

These results predict broad trends in the evolution of life histories and reproduc−

tive strategies in various organisms. Since for the same mean value of offspring an iterop−

arous strategy produces a lower variance in surviving progeny than a semelparous strat−

egy, it  is predicted that semelparity should be less common in organisms with small

population sizes, or in highly structured populations when the life cycle is of the BSM

type. For a large population or a metapopulation of organisms with a BMS life cycle, the

penalty for high variance is lower and semelparity should be more common, particularly

if  the semelparous strategy can produce a higher mean number of offspring.

At  a practical level, this means that one would expect semelparity to be more

common among organisms where the most incoming migrants to any deme are juveniles

and the most important selection takes place after migration. This is the case with broad−

cast spawning marine invertebrates, many of which have large, widely distributed metap−

opulations that exchange migrants via planktonic eggs and larvae, and with plants that

disperse seeds over long distances. Semelparity would probably be more prevalent in

such organisms than in (for example) birds or large mammals, where most of the migra−

tion between demes is by adults that have already been subjected to an entire life of

selection. 

The trade−offs  involved in determining reproductive strategy are often more

complicated than a balance between mean and variance (for example, a balance between

adult and juvenile mortality, as discussed by Charnov and Schaffer 1973) , but the

effects of offspring variance on the fitness of a genotype are potentially strong enough

for this to be an important factor in many animal and plant populations.
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There are a several potentially important consequences of selection on variance

of offspring production in metapopulations. That the effective fitness of a strategy where

there is variance in clutch size depends on population size was established by Gillespie

(1974), so it stands to reason that population processes that lead to differences between

census size and "effective" population size (such as density fluctuations, differences in

frequency between the sexes, (see Proulx 2000) can lead to differences in the selective

advantage of a strategy with a given mean and variance. 

Migration and population structure are known to cause a discrepancy between

census and effective population size from the standpoint of genetic drift (e.g. Whitlock

and Barton 1997), which might suggest that other sources of variance would be influ−

enced by subdivision. It  is interesting that these effects turn out to depend on the

sequence of events in an organism’s life cycle, i.e. whether reproduction and selection

take place within demes prior to migration or whether migration occurs after reproduc−

tion but before selective culling. In the BSM life cycle, the effective population size of a

deme is essentially equal to its census size, while for BMS, the effective size of a deme

(and for that matter, the entire metapopulation as an average of behavior across demes)

ranges from the census size of a deme to the census size of a metapopulation.

What this suggests is that the influence of offspring variance on the performance

of a given strategy cannot necessarily be ignored even in large populations. Tradition−

ally, the significance of equations (8−9)  was considered by many to be of only aca−

demic interest on the grounds that most biological populations were large enough for

sample variance to play a minor role. What the results in this paper show is that even in

a large metapopulation with extensive mixing, if  the life cycle BSM and the population

consists of many small demes, the effect of offspring variance is essentially the same as

it  would be for a single small deme. Consequently, the impact of offspring variance

must be assessed on a case by case basis, depending on life cycle and population struc−

ture as well as the fitness and variance parameters.

In other words, if  there is a trade−off   between producing a high mean number

of offspring and reducing variance (as in the semelparous vs. iteroparous regimes men−

tioned in the introduction),  the outcome of selection will  depend not only on the census

number in the population, but on life cycle and migration rate. Using the semelparity

and iteroparity examples, an organism that reproduces once and produces an average of

on clutch k1=1 of Ω1=10 offspring that survive (as a whole clutch) with a probability of

Π=0.1 and fail with a probability of 1−Π=0.9  has a mean fitness Μ1=k1Ω1Π=1 and vari−

ance Σ1
2=k1Ω1

2Π(1−Π)=9.  If  it competes against an iteroparous strategy that produces a

k2=10 clutches of Ω2=1 single offspring (with the probability of surviving Π=0.1), the

parameters are Μ2=0.9 and Σ2
2=0.81. 

Equation (17) predicts that for a population size n<81.9 the iteroparous strategy

will  be favored in spite of having a lower arithmetic mean. If  the selection takes place in

the context of a metapopulation with D=10 demes with n=50 individuals per deme, the

iteroparous strategy will  always be favored in BSM life cycle regardless of migration

rate. 

In a BMS life cycle, there will  be a critical value of migration rate at which the

higher mean semelparous strategy starts to be favored. This critical value can be approxi−

mated as the value of m that gives ne = 81.9 in Eq. (30), with n=50 and D=10. Solving

the quadratic equation for m, the root less then unity is m=0.2218. This corresponds

reasonably well with the individual based simulations in Shpak (2005), where the proba−

bility  of fixing  the iteroparous strategy (with initial  frequency p=0.5) was near 50%

when there were between 1 and 2 migrants exchanged between any pair of demes

(corresponding to effective neutrality for some value of m between 0.2 and 0.4). The

simulations include effects of genetic drift, but (30) still gives a much better estimate of

the critical migration rate than the linear estimate in Shpak 2005.

These results predict broad trends in the evolution of life histories and reproduc−

tive strategies in various organisms. Since for the same mean value of offspring an iterop−

arous strategy produces a lower variance in surviving progeny than a semelparous strat−

egy, it  is predicted that semelparity should be less common in organisms with small

population sizes, or in highly structured populations when the life cycle is of the BSM

type. For a large population or a metapopulation of organisms with a BMS life cycle, the

penalty for high variance is lower and semelparity should be more common, particularly

if  the semelparous strategy can produce a higher mean number of offspring.

At  a practical level, this means that one would expect semelparity to be more

common among organisms where the most incoming migrants to any deme are juveniles

and the most important selection takes place after migration. This is the case with broad−

cast spawning marine invertebrates, many of which have large, widely distributed metap−

opulations that exchange migrants via planktonic eggs and larvae, and with plants that

disperse seeds over long distances. Semelparity would probably be more prevalent in

such organisms than in (for example) birds or large mammals, where most of the migra−

tion between demes is by adults that have already been subjected to an entire life of

selection. 

The trade−offs  involved in determining reproductive strategy are often more

complicated than a balance between mean and variance (for example, a balance between

adult and juvenile mortality, as discussed by Charnov and Schaffer 1973) , but the

effects of offspring variance on the fitness of a genotype are potentially strong enough

for this to be an important factor in many animal and plant populations.
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There are a several potentially important consequences of selection on variance

of offspring production in metapopulations. That the effective fitness of a strategy where

there is variance in clutch size depends on population size was established by Gillespie

(1974), so it stands to reason that population processes that lead to differences between

census size and "effective" population size (such as density fluctuations, differences in

frequency between the sexes, (see Proulx 2000) can lead to differences in the selective

advantage of a strategy with a given mean and variance. 

Migration and population structure are known to cause a discrepancy between

census and effective population size from the standpoint of genetic drift (e.g. Whitlock

and Barton 1997), which might suggest that other sources of variance would be influ−

enced by subdivision. It  is interesting that these effects turn out to depend on the

sequence of events in an organism’s life cycle, i.e. whether reproduction and selection

take place within demes prior to migration or whether migration occurs after reproduc−

tion but before selective culling. In the BSM life cycle, the effective population size of a

deme is essentially equal to its census size, while for BMS, the effective size of a deme

(and for that matter, the entire metapopulation as an average of behavior across demes)

ranges from the census size of a deme to the census size of a metapopulation.

What this suggests is that the influence of offspring variance on the performance

of a given strategy cannot necessarily be ignored even in large populations. Tradition−

ally, the significance of equations (8−9)  was considered by many to be of only aca−

demic interest on the grounds that most biological populations were large enough for

sample variance to play a minor role. What the results in this paper show is that even in

a large metapopulation with extensive mixing, if  the life cycle BSM and the population

consists of many small demes, the effect of offspring variance is essentially the same as

it  would be for a single small deme. Consequently, the impact of offspring variance

must be assessed on a case by case basis, depending on life cycle and population struc−

ture as well as the fitness and variance parameters.

In other words, if  there is a trade−off   between producing a high mean number

of offspring and reducing variance (as in the semelparous vs. iteroparous regimes men−

tioned in the introduction),  the outcome of selection will  depend not only on the census

number in the population, but on life cycle and migration rate. Using the semelparity

and iteroparity examples, an organism that reproduces once and produces an average of

on clutch k1=1 of Ω1=10 offspring that survive (as a whole clutch) with a probability of

Π=0.1 and fail with a probability of 1−Π=0.9  has a mean fitness Μ1=k1Ω1Π=1 and vari−

ance Σ1
2=k1Ω1

2Π(1−Π)=9.  If  it competes against an iteroparous strategy that produces a

k2=10 clutches of Ω2=1 single offspring (with the probability of surviving Π=0.1), the

parameters are Μ2=0.9 and Σ2
2=0.81. 

Equation (17) predicts that for a population size n<81.9 the iteroparous strategy

will  be favored in spite of having a lower arithmetic mean. If  the selection takes place in

the context of a metapopulation with D=10 demes with n=50 individuals per deme, the

iteroparous strategy will  always be favored in BSM life cycle regardless of migration

rate. 

In a BMS life cycle, there will  be a critical value of migration rate at which the

higher mean semelparous strategy starts to be favored. This critical value can be approxi−

mated as the value of m that gives ne = 81.9 in Eq. (30), with n=50 and D=10. Solving

the quadratic equation for m, the root less then unity is m=0.2218. This corresponds

reasonably well with the individual based simulations in Shpak (2005), where the proba−

bility  of fixing  the iteroparous strategy (with initial  frequency p=0.5) was near 50%

when there were between 1 and 2 migrants exchanged between any pair of demes

(corresponding to effective neutrality for some value of m between 0.2 and 0.4). The

simulations include effects of genetic drift, but (30) still gives a much better estimate of

the critical migration rate than the linear estimate in Shpak 2005.

These results predict broad trends in the evolution of life histories and reproduc−

tive strategies in various organisms. Since for the same mean value of offspring an iterop−

arous strategy produces a lower variance in surviving progeny than a semelparous strat−

egy, it  is predicted that semelparity should be less common in organisms with small

population sizes, or in highly structured populations when the life cycle is of the BSM

type. For a large population or a metapopulation of organisms with a BMS life cycle, the

penalty for high variance is lower and semelparity should be more common, particularly

if  the semelparous strategy can produce a higher mean number of offspring.

At  a practical level, this means that one would expect semelparity to be more

common among organisms where the most incoming migrants to any deme are juveniles

and the most important selection takes place after migration. This is the case with broad−

cast spawning marine invertebrates, many of which have large, widely distributed metap−

opulations that exchange migrants via planktonic eggs and larvae, and with plants that

disperse seeds over long distances. Semelparity would probably be more prevalent in

such organisms than in (for example) birds or large mammals, where most of the migra−

tion between demes is by adults that have already been subjected to an entire life of

selection. 

The trade−offs  involved in determining reproductive strategy are often more

complicated than a balance between mean and variance (for example, a balance between

adult and juvenile mortality, as discussed by Charnov and Schaffer 1973) , but the

effects of offspring variance on the fitness of a genotype are potentially strong enough

for this to be an important factor in many animal and plant populations.

Appendix: The Diffusion Coefficient in Metapopulation Model

The derivation of V(p) in a single deme is shown in Equations 11−14.  The same approxi−

mations and assumptions about migration used to derive E[p(t+1)] in a metapopulation

under different life cycles is used to calculate the second moments:
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writing a Taylor expansion in terms of  Ε,
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-HS@z1, xiD + S@z2, n - xiDL xi Μ1�����������������������������������������������������������������������������Hxi Μ1 + Hn - xi L Μ2L2
y{zzy{zz2y{zzz

applying the variance and covariance relations on the sums of z (reducing the expression

to functions of the mean and variance values) and substituting npi , np��  for xi  and x��, the

expectation value is
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HA .3L E@p Ht + 1L2D =J m p� Μ1������������������������������������������
p� Μ1 + H1 - p� L Μ2

+
H1 - mL pi Μ1��������������������������������������������

pi Μ1 + H1 - piL Μ2
N2

+

m2 H1 - p�L p� HH1 - p�L Μ2
2 Σ1

2 - p� Μ1
2 Σ2

2L
����������������������������������������������������������������������������������

n Hp� HΜ1 - Μ2L + Μ2L4 +H1 - mL2 H1 - piL pi  HH1 - piL Μ2
2 Σ1

2 - pi Μ1
2 Σ2

2L
��������������������������������������������������������������������������������������������������������

n Hpi HΜ1 - Μ2L + Μ2L4 +

2 J m p� Μ1�����������������������������������������
p� Μ1 + H1 - p� L Μ2

+
H1 - mL pi Μ1�������������������������������������������

pi Μ1 + H1 - piL Μ2
Nikjjm H1 - p�L p� Μ1 H Μ2 Σ1

2 + Μ1 Σ2
2L

����������������������������������������������������������������
n H p� Μ1 + H1 - p�L Μ2L3 +

H1 - mL 
pi  H1 - piL HΜ2  Σ1

2 + Μ1 Σ2
2L

�������������������������������������������������������������
n H pi Μ1 + H1 - pi L Μ2L3

y{zz
The expression for V(pi) is simply the above quantity plus (pi

2−2pi  E[pi(t+1)]), where

E[pi(t+1)] consists of the terms in Equations 19−20. 

As was the case for the first moments, there is no contribution of offspring vari−

ance to V(pi) in the BSM life cycle except for the weighted difference of allele frequen−

cies between the metapopulation mean and the census deme. In the absence of allele

frequency differences, V(pi) reduces to an equation identical to (14) for a single deme,

as did the first moment.

� Birth®Migration®Selection Life Cycle

The second moment of  pi(t+1) is calculated from the expectation of:HA .4L p2  Ht + 1L =Jm J Ε s@z1, D x�D
������������������������������

D
+ x� Μ1N + H1 - mL HΕ s@z1, xiD + xi Μ1LN2 �

2
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Jm J Ε s@z1, D x�D
������������������������������

D
+ x� Μ1N + H1 - mL HΕ s@z1, xiD + xi Μ1L +

m J Ε s@z2, D Hn - x�LD
�������������������������������������������

D
+ Hn - x�L Μ2N +

H1 - mL HΕ s@z2, n - xiD + Hn - xiL Μ2LN2

Up to the quadratic term in a series expansion about Ε=0, the above expression is:HA .5L Hm x� Μ1 + H1 - m L xi Μ1L2 �Hm x� Μ1 + H1 - mL xi Μ1 + m Hn - x� L Μ2 +H1 - mL Hn - xiL Μ2L2 +

Ε JJ2 J m S@z1, D x�D
������������������������������

D
+ S@z1, xiD - m S@z1, xiDNHm x� Μ1 + H1 - mL xi Μ1LN � Hm x� Μ1 + H1 - mL xi Μ1 +

m Hn - x� L Μ2 + H1 - mL Hn - xiL Μ2L2 -J2 J m S@z1, D x�D
������������������������������

D
+ S@z1, xiD - m S@z1, xiD +

m S@z2, D Hn - x�LD
�������������������������������������������

D
+ S@z2, n - xiD -

m S@z2, n - xiDN Hm x� Μ1 + H1 - mL xi Μ1L2N �Hm x� Μ1 + H1 - mL xi Μ1 + m Hn - x� L Μ2 +H1 - mL Hn - xiL Μ2L3N +

Ε2 ikjjikjj3 J m S@z1, D x�D
������������������������������

D
+ s@z1, xiD - m s@z1, xiD +

m S@z2, D Hn - x�LD
�������������������������������������������

D
+

S@z2, n - xiD - m S@z2, n - xiDN2

Hm x� Μ1 + H1 - mL xi Μ1L2y{zz � Hm x� Μ1 + H1 - mL xi Μ1 +

m Hn - x� L Μ2 + H1 - mL Hn - xiL Μ2L4 -J4 J m S@z1, D x�D
������������������������������

D
+ S@z1, xiD - m S@z1, xiDNJ m S@z1, D x�D

������������������������������
D

+ S@z1, xiD - m S@z1, xiD +

+ -
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m s@z2, D Hn - x�LD
�������������������������������������������

D
+ S@z2, n - xiD -

m S@z2, n - xiDN Hm x� Μ1 + H1 - mL xi Μ1LN �Hm x� Μ1 + H1 - mL xi Μ1 + m Hn - x� L Μ2 +H1 - mL Hn - xiL Μ2L3 +J m S@z1, D x�D
������������������������������

D
+ S@z1, xiD - m S@z1, xiDN2 �Hm x� Μ1 + H1 - mL xi Μ1 +

m Hn - x� L Μ2 + H1 - mL Hn - xiL Μ2L2y{zz
Substituting mean and variance values for S[z,x], the expectation isHA .6L E@p2  Ht + 1LD =Hm p� Μ1 + H1 - mL pi Μ1L2 � Hm p� Μ1 + H1 - mL pi Μ1 +

m H1 - p�L Μ2 + H1 - mL H1 - piL Μ2L2 -J4 Hm p� Μ1 + H1 - mL pi Μ1L J m2 p� Σ1
2

������������������
D

+ H1 - mL2 pi Σ1
2NN � n Hm p� Μ1 + H1 - mL pi Μ1 +

m H1 - p�L Μ2 + H1 - mL H1 - piL Μ2L3 +J m2 p� Σ1
2

�����������������
D

+ H1 - mL2 pi Σ1
2N � n Hm p� Μ1 + H1 - mL pi Μ1 +

m H1 - p�L Μ2 + H1 - mL H1 - piL Μ2L2 +J3 Hm p� Μ1 + H1 - mL pi Μ1L2 J m2 p� Σ1
2

������������������
D

+ H1 - mL2 pi Σ1
2 +

m2 H1 - p�L Σ2
2

�������������������������������
D

+ D H1 - mL2 H1 - piL Σ2
2NN � n Hm p� Μ1 + H1 - mL pi Μ1 + m H1 - p�L Μ2 + H1 - mL H1 - piL Μ2L4

When the allele frequency in the ith deme equals that of the population mean, this

reduces toHA .7L HH1 - mL pi Μ1 + m pi Μ1L2 � Hpi Μ1 + H1 - piL Μ2L2 -J4 HH1 - mL pi Μ1 + m pi Μ1L JH1 - mL2 pi Σ1
2 +

m2 pi Σ1
2

�������������������
D

NN � n Hpi Μ1 + H1 - piL Μ2L3 +

+

TPBMS.nb 28



JH1 - mL2 pi Σ1
2 +

m2 pi Σ1
2

�������������������
D

N � n Hpi Μ1 + H1 - piL Μ2L2 +J3 pi Μ1
2 JH1 - mL2 pi Σ1

2 +
m2 pi Σ1

2
�������������������

D
+ D H1 - mL2 H1 - piL Σ2

2 +

m2 H1 - piL Σ2
2

��������������������������������
D

NN � n Hpi Μ1 + H1 - piL Μ2L4

which, as with the first moment, remains dependent on m and D in the BSM life even

with equal allele frequencies.

V(pi) is calculated by adding the quantity (pi
2−2piE[pi(t+1)]) to A.6 or A.7,

where E[p(t+1)] is given in the first terms of Eq. (25).

Since there are closed form solutions for V(pi) in a metapopulation, one can in

principle calculate probabilities of fixation and loss from the Kolmogorov backward

equation (10) using the integration in (16) for various parameters.
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