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Weak pairwise correlations imply strongly correlated

network states in a neural population
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Biological networks have so many possible states that exhaustive sampling is impossible. Success-
ful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that
complicated, higher order interactions among large groups of elements play an important role.
In the vertebrate retina, we show that weak correlations between pairs of neurons coexist with
strongly collective behavior in the responses of ten or more neurons. Surprisingly, we find that
this collective behavior is described quantitatively by models that capture the observed pairwise
correlations but assume no higher order interactions. These maximum entropy models are equiv-
alent to Ising models, and predict that larger networks are completely dominated by correlation
effects. This suggests that the neural code has associative or error- correcting properties, and we
provide preliminary evidence for such behavior. As a first test for the generality of these ideas,
we show that similar results are obtained from networks of cultured cortical neurons.

Much of what we know about biological networks
has been learned by studying one element at a time—
recording the electrical activity of single neurons, the ex-
pression levels of single genes or the concentrations of
individual metabolites. On the other hand, important as-
pects of biological function must be shared among many
elements (1–4). As a first step beyond the analysis of
elements in isolation, much attention has been focused
on the pairwise correlation properties of these elements,
both in networks of neurons (5–13) and in networks of
genes (14–16). But given a characterization of pairwise
correlations, what can we really say about the whole net-
work? How can we tell if inferences from a pairwise anal-
ysis are correct, or if they are defeated by higher order
interactions among triplets, quadruplets, ... of elements?
If these effects are important, how can we escape from
the ‘curse of dimensionality’ that arises because there are
exponentially many possibilities for such terms?

Here we address these questions in the context of the
vertebrate retina, where it is possible to make long, sta-
ble recordings from many neurons simultaneously as the
system responds to complex, naturalistic inputs (17–20).
We compare the correlation properties of cell pairs with
the collective behavior in larger groups of cells, and find
that the minimal model which incorporates the pairwise
correlations provides strikingly accurate but non–trivial
predictions of the collective effects. These minimal mod-
els are equivalent to the Ising model in statistical physics,
and this mapping allows us to explore the properties of
larger networks, in particular their capacity for error–
correcting representations of incoming sensory data.1

1 A preliminary account of this work was presented at
the conference on Computational and Systems Neuroscience
(COSYNE), 17–20 March 2005, in Salt Lake City, Utah. See
http://cosyne.org.

I. THE SCALE OF CORRELATIONS

Throughout the nervous system, individual elements
communicate by generating discrete pulses termed ac-
tion potentials or spikes (21). If we look through a
window of fixed time resolution ∆τ , then for small ∆τ
these responses are binary—either the cell spikes (‘1’)
or it doesn’t (‘0’). Although some pairs of cells have
very strong correlations, most correlations are weak, so
that the probability of seeing synchronous spikes is al-
most equal to the product of the probabilities of seeing
the individual spikes; nonetheless, these weak correla-
tions are statistically significant for most if not all pairs of
nearby cells. All of these features are illustrated quanti-
tatively by an experiment on the salamander retina (Fig.
1), where we record simultaneously from 40 retinal gan-
glion cells as they respond to movies taken from a natural
setting (see Methods). Mean spike rates range from 0.3
to 4.5 spikes/s and the correlations between cells have
structure on the scale of ∆τ = 20ms. Using this window
to define binary variables, we find correlation coefficients
that range from −0.03 to 0.5, with ninety percent of the
results falling in the narrow range C ∈ [−0.02,+0.1].

The small values of the correlation coefficients suggest
an approximation in which the cells are completely inde-
pendent. For most pairs, this is true with a precision of
a few percent, but if we extrapolate this approximation
to the whole population of 40 cells, it fails disastrously.
In Fig. 1e we show the probability P (K) that K of these
cells generate a spike in the same small window of du-
ration ∆τ . If the cells were independent, P (K) would
approximate the Poisson distribution, while the true dis-
tribution is nearly exponential. The probability ofK = 7
cells spiking together is ∼ 103× larger than expected in
the independent model, and at K = 10 the discrepancy
is ∼ 105: 10–spike events occur several times per minute
in this small patch of the retina, while the independent

http://arxiv.org/abs/q-bio/0512013v1


2

�SPIKE
PATTERNS

�SPIKE
PATTERNS

�SPIKE
PATTERNS

����������

�����������

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��

��

��
��

��
��

��

FIG. 1 Weak pairwise cross–correlations and the failure of the independent approximation. (a) A segment of the simultaneous
responses of 40 retinal ganglion cells in the salamander to a natural movie clip. Each dot represents the time of an action
potential. (b) Discretization of population spike trains into a binary pattern is shown for the green boxed area in panel a:
spike trains are binned using ∆τ = 20ms windows (top panel), into binary sequences of spiking (1) and non-spiking (0); in
the rare cases where there is more than one spike in a bin, we denote it as ‘1’. Every string (bottom panel) describes the
activity pattern of the cells on a give time point. For clarity, 10 out of 40 cells are shown. (c) Example cross–correlogram
between two neurons with strong correlations; the average firing rate of one cell is plotted relative to time at which the other
cell spikes. Inset shows the same cross–correlogram on an expanded time scale. (d) Histogram of correlation coefficients for
all pairs of 40 cells from panel a. We discretize the neural response into binary (spike/no spike) variables for each cell, using
∆τ = 20ms bins as in (b), and then compute the correlation coefficients among these variables. Because the data sets we
consider here are very large (∼ 1 hour), the threshold for statistical significance of the individual correlation coefficients is well
below |C| = 0.01. (e) Probability distribution of synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The distribution of synchronous events for the same 40 cells
after shuffling each cell’s spike train to eliminate all correlations (blue), compared to the Poisson distribution (dashed light
blue). (f) The rate of occurrence of each pattern predicted if all cells are independent is plotted against the measured rate. Each
dot stands for one of the 210 = 1024 possible binary activity patterns for 10 cells. Black line shows equality. Two examples of
extreme mis–estimation of the actual pattern rate by the independent model are highlighted (see text). The logarithmic scale
emphasizes the large dynamic range and large errors of the independent approximation; less clear is that the (very accurately
measured) probability of the response 0000000000 is underestimated by ∼ 7%.

model predicts that they should occur once every three
weeks.

The discrepancy between the independent model and
the actual data is even more clear if we look at particu-
lar patterns of response across the population. Choosing
N = 10 cells out the 40, we can form an N–letter binary
word to describe the instantaneous state of the network,
as in Fig 1b. The independent model makes simple pre-
dictions for the rate at which each such word should oc-
cur, and Fig.1f shows these predictions as a scatter plot
against the actual rate at which the words occur in the
experiment. At one extreme, the word 1011001010 occurs
once per minute, while the independent model predicts

that this should occur once per three years. Conversely,
the word 1000000010 is predicted to occur once per three
seconds, while in fact it occurred only three times in the
course of an hour. Although these are extreme cases,
the independent model makes order–of–magnitude errors
even for the rates of very common patterns of activity,
such as a single cell generating a spike while all others
are silent. Indeed, in the scatter plot of predicted vs.
observed rates we see clusters corresponding to different
total numbers of spikes, but within each cluster the pre-
dictions and observations are strongly anti–correlated.

We conclude that weak correlations among pairs of
neurons coexist with strong correlations in the states
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of the population as a whole. One possible explana-
tion is that there are specific multi–neuron correlations,
whether driven by the stimulus or intrinsic to the net-
work, which simply are not measured by looking at pairs
of cells. Searching for such higher order effects presents
many challenges (22–24). Another scenario is that small
correlations among very many pairs could add up to a
strong effect on the network as a whole. If correct, this
would be an enormous simplification in our description
of the network dynamics.

II. MINIMAL CONSEQUENCES OF PAIRWISE

CORRELATIONS

To describe the network as a whole we need to write
down a probability distribution for the 2N binary words
corresponding to patterns of spiking and silence in the
population. The pairwise correlations tell us something
about this distribution, but there are an infinite number
of models that are consistent with a given set of pairwise
correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations,
and does not implicitly assume the existence of unmea-
sured higher–order interactions. Since the entropy of a
distribution measures the randomness or lack of interac-
tion among different variables (25), this minimally struc-
tured distribution that we are looking for is the maximum
entropy distribution (26) consistent with the measured
properties of individual cells and cell pairs (27).

We recall that maximum entropy models have a close
connection to statistical mechanics: physical systems in
thermal equilibrium are described by the Boltzmann dis-
tribution, which has the maximum possible entropy given
the mean energy of the system (26; 28). Thus any max-
imum entropy probability distribution defines an energy
function for the system we are studying, and we will see
that the energy function relevant for our problem is an
Ising model. Ising models have been discussed exten-
sively as models for neural networks (29; 30), but in
these discussions the model arose from specific hypothe-
ses about the network dynamics. Here the Ising model
is forced upon us as the least structured model that is
consistent with measured spike rates and pairwise cor-
relations; we emphasize that this is not an analogy or a
metaphor, but rather an exact mapping.

Whether we view the maximum entropy model through
its analogy with statistical physics or simply as a model
to be constructed numerically from the data (see Meth-
ods), we need meaningful ways of assessing whether this
model is correct. Generally, for a network of N elements,
we can define maximum entropy distributions PK that
are consistent with all Kth–order correlations for any
K = 1, 2, · · · , N (27). These distributions form a hi-
erarchy, from K = 1 where all elements are indepen-
dent, up to K = N , which is an exact description that
allows arbitrarily complex interactions; their entropies
SK decrease monotonically toward the true entropy S:

S1 ≥ S2 ≥ · · · ≥ SN = S. The entropy difference
or multi–information IN = S1 − SN measures the to-
tal amount of correlation in the network, independent of
whether it arises from pairwise, triplet, or more complex
correlations (31). The contribution of the Kth–order cor-
relation is IK = SK−1−SK and is always positive (more
correlation always reduces the entropy); IN is the sum of
all the IK (27). Therefore, the question of whether pair-
wise correlations provide an effective description of the
system becomes the question of whether the reduction in
entropy that comes from these correlations, I2 = S1−S2,
captures all or most of the multi–information IN .

III. ARE PAIRWISE CORRELATIONS ENOUGH?

Figure 2 shows the predictions of the maximum en-
tropy model P2 consistent with pairwise correlations in
populations of N = 10 cells. Looking in detail at the
patterns of spiking and silence of one group of 10 cells,
we see that the predicted rates for different binary words
are tightly correlated with the observed rates over a very
large dynamic range, so that the dramatic failures of the
independent model have been overcome (Fig 2a).
With 40 cells we can choose many different populations

of 10 cells, and in each case we find that the predicted and
observed distributions of words are very similar. This is
quantified by the Jensen–Shannon divergence DJS (34),
which essentially measures the inverse of the number of
independent samples we would need in order to be sure
that the two distributions were different. While the true
distribution of responses is not exactly the same as that
predicted by the maximum entropy model, it typically
would take thousands of independent samples to distin-
guish reliably between them, two orders magnitude more
than in the independent model (Fig. 2b).
The success of the pairwise maximum entropy models

in capturing the correlation structure of the network is
summarized by the fraction I2/IN ∼ 90% (Fig 2c). This
ratio is larger when IN itself is larger, so that the pair-
wise model is more effective in describing populations of
cells with stronger correlations, and the ability of this
model to capture ∼ 90% of the multi–information holds
independent of many details (Fig 2d): We can vary the
particular natural movies shown to the retina, use an
artificial movie, change the size of the bins ∆τ used to
define the binary responses, the number of neurons N
that we analyze, and even shift from a lower vertebrate
(salamander) to a mammalian (guinea pig) retina. Fi-
nally, the correlation structure in a network of cultured
cortical neurons (41) can be captured by the pairwise
model with similar accuracy.
The maximum entropy model describes the correla-

tion structure of the network activity without assump-
tions about its mechanistic origin. A more traditional
approach has been to dissect the correlations into contri-
butions that are intrinsic to the network and those that
are driven by the visual stimulus. The simplest model



4

FIG. 2 A maximum entropy model including all pairwise interactions gives an excellent approximation of the full network
correlation structure. (a) Using the same group of 10 cells from Fig. 1, the rate of occurrence of each firing pattern predicted
from the the maximum entropy model P2 that takes into account all pairwise correlations is plotted against the measured
rate (red dots). The rates of commonly occurring patterns are predicted with better than 10% accuracy, and scatter between
predictions and observations is confined largely to rare events for which the measurement of rates is itself uncertain. For
comparison, the independent model P1 is also plotted (from Fig. 1f; gray points). Black line shows equality. (b) Histogram of
Jensen–Shannon divergences between the actual probability distribution of activity patterns in 10 cell groups and the models
P1 (gray) and P2 (red); data from 250 groups. Note that the histograms are plotted on a logarithmic scale, because the two
cases have values differing by two orders of magnitude. (c) Fraction of full network correlation in 10 cell groups that is captured
by the maximum entropy model of 2nd order, I2/IN , plotted as a function of the full network correlation, measured by the
multi–information IN (red dots). The multi–information values are multiplied by 1/∆τ to give bin–independent units. Every
dot stands for one group of 10 cells. The 10 cell group featured in panel a is shown as an light blue dot. For the same sets of 10
cells, the fraction of information of full network correlation in 10 cell groups that is captured by the conditional independence
model, Icond−indep/IN , is shown in black (see text). (d) Average values of I2/IN from 250 different 10 cell groups. Results
are shown for different movies, for different species, and for cultured cortical networks; error bars show standard errors of the
mean. Similar results are obtained on changing N and ∆τ .

in this view is one in which cells spike independently in
response to their input, so that all correlations are gen-
erated by covariations of the individual cells’ firing rates
(35). Although there may be situations in which con-
ditional independence is a good approximation, Fig 2c
shows that this model is less effective than the maxi-
mum entropy model in capturing the multi–information
for 232/250 groups of 10 neurons. The hypothesis of con-
ditional independence is consistently less effective in cap-
turing the structure of more strongly correlated groups
of cells, which is opposite to the behavior of the max-
imum entropy model. Note also that because each cell
has its own spike rate, potentially different at each mo-
ment in time, the conditionally independent model has
has NT/∆τ parameters, where T is the duration of the
stimulus movie; in our case NT/∆τ ∼ 104, in contrast
to the N(N +1)/2 = 55 parameters of the maximum en-

tropy model. Finally, while the maximum entropy model
can be constructed solely from the observed correlations
among neurons, the conditionally independent model re-
quires explicit access to repeated presentations of the vi-
sual stimulus. Thus while the central nervous system
could learn the maximum entropy model from the data
provided by the retina alone, the conditionally indepen-
dent model is not biologically realistic in this sense.

We conclude that although the pairwise correlations
are small and the multi–neuron deviations from indepen-
dence are large, the maximum entropy model consistent
with the pairwise correlations captures almost all of the
structure in the distribution of responses from the full
population of neurons. Thus, the weak pairwise corre-
lations imply strongly correlated states. To understand
how this happens, it is useful to look at the mathematical
structure of the maximum entropy distribution.
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IV. ISING MODELS, REVISITED

We recall that the maximum entropy distribution con-
sistent with a known average energy 〈E〉 is the Boltz-
mann distribution, P ∝ exp(−E/kBT ). This generalizes
so that if we know the average values of many variables
fµdescribing the system, then the maximum entropy dis-
tribution is P ∝ exp(−

∑

µ λµfµ), where there is a sepa-

rate Lagrange multiplier λµ for each constraint (26; 28).
In our case, we are given the average probability of a
spike in each cell and the correlations among all pairs. If
we represent the activity of cell i by a variable σi = ±1,
where +1 stands for spiking and −1 stands for silence,
then these constraints are equivalent to fixing the average
of each σi and the averages of all products σiσj, respec-
tively. The resulting maximum entropy distribution is

P2(σ1, σ2, · · · , σN )

=
1

Z
exp





∑

i

hiσi +
1

2

∑

i 6=j

Jijσiσj



 , (1)

where the Lagrange multipliers {hi, Jij} have to be cho-
sen so that the averages {〈σi〉, 〈σiσj〉} in this distribution
agree with experiment. This is the Ising model (28),
where the σi are spins, the hi are local magnetic fields
acting on each spin, and the Jij are the exchange inter-
actions; note that h > 0 favors spiking and J > 0 favors
positive correlations.
Figure 3 shows the parameters {hi, Jij} for a particular

group of ten cells, as well as the distributions of param-
eters for many such groups. Most cells have a negative
local field, which biases them toward silence. Figures 3c
and d illustrates the non–trivial relationship between the
pairwise interaction strengths Jij and the observed pair-
wise correlations. Correlations can be induced between
two cells in the absence of direct interaction when both
cells interact with a common neighbor (Fig 3c, left). Al-
ternatively, if the interactions among pairs of cells have
alternating signs, then it is possible to have “frustration”
among triplets of cells destroy the correlations between
two cells even when they have a strong positive inter-
action (Fig 3c, right). Roughly 40% of all triangles are
frustrated in this way, and we return to this below.
We can rewrite Eq (1) exactly by saying that each

neuron or spin σi experiences an effective magnetic field
that includes the local field or intrinsic bias hi and a
contribution from interactions with all the other spins,
hint
i = 1

2

∑

j 6=i Jijσj; note that hint
i depends on whether

the other cells are spiking or silent. The intrinsic bias
dominates in small groups of cells, but as we look to
larger networks, the fact that almost all of the ∼ N2 pairs
of cells are significantly (if weakly) interacting shifts the
balance so that the typical values of the intrinsic bias are
reduced while the effective field contributed by the other
cells has increased (Fig. 4). Intuitively, although the in-
fluence of one cell on another is small, the summed effect
of many cells on one cell can be large, so that states of

FIG. 3 Pairwise interactions and individual cell biases, as in
Eq. (1). (a) Example of the pairwise interactions Jij (above)
and bias values (or local fields) hi (below) for one group of
10 cells. (b) Histograms of hi and Jij values from 250 dif-
ferent groups of 10 cells. (c) Two examples of 3 cells within
a group of 10. At left, cells A and B have almost no inter-
action (JAB = −0.02), but cell C is very strongly interact-
ing with both A and B (JAC = 0.52,JBC = 0.70), so that
cells A and B exhibit strong correlation, as shown by their
cross–correlogram (bottom panel; CAB = 0.11). At right, a
“frustrated” triplet, in which cells A and B have a signif-
icant positive interaction (JAB = 0.13), as do cells B and
C (JBC = 0.09), but A and C have a significant negative
interaction (JAC = −0.11). As a result, there is no clear
correlation between cells A and B, as shown by their cross–
correlogram (bottom panel; CAB = −0.005). (d) Interaction
strength Jij plotted against the correlation coefficient Cij; each
point shows the value for one cell pair averaged over many dif-
ferent groups of neighboring cells (190 pairs from 250 groups),
and error bars show standard deviations.
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FIG. 4 Interactions and local fields in networks of different
size. (a) Grayscale density map of the distribution of effective
interaction fields experienced by a single cell hint

i versus its
own bias or local field hi (see text); distribution formed over
network configurations at each point in time during a natural
movie for n=1140 3–cell groups (top panel) and n=250 10–
cell groups (bottom panel). Black line shows the boundary
between dominance of local fields vs. interactions. (b) Mean
interactions Jij and local fields hi describing groups of N cells,
with error bars showing standard deviations across multiple
groups. While local fields decline significantly with increas-
ing network size, interaction strengths do not. (c) Pairwise
interaction in a network of 10 cells J10

ij plotted against the in-
teraction values of the same pair in a sub-network containing
only 5 cells J5

ij. Line shows equality.

the whole network are far from those predicted by the
independent approximation.

V. LARGER NETWORKS AND ERROR CORRECTION

Groups of N = 10 cells are large enough to reveal dra-
matic departures from independence, but small enough
that we can directly sample the relevant probability dis-
tributions. What happens at larger N? In general we
expect that the total capacity of the network to repre-
sent its sensory inputs should grow in proportion to the
number of neurons N . This is the usual thermodynamic
limit in statistical mechanics, where energy and entropy
are proportional to system size (28). But this behavior is
not guaranteed when all elements of the system interact
with each other. In the Ising model, it is known that if

all pairs of spins (here, cells) interact significantly, then
to recover the thermodynamic limit the typical size of
the interactions Jij must decrease with N (30; 36). Al-
though we have not analyzed very large networks, we see
no signs of significant changes in J with growing N (Fig
4b, c).

In a physical system, the maximum entropy distribu-
tion is equivalent to the Boltzmann distribution P ∝
exp(−E/kBT ), and the behavior of the system depends
on the temperature T . For the network of neurons, there
is no real temperature, but the statistical mechanics of
the Ising model predicts that when all pairs of elements
interact, increasing the number of elements while fixing
the typical strength of interactions is equivalent to lower-
ing the temperature T in a physical system of fixed size
N . This mapping predicts that correlations will be even
more important in larger groups of neurons.

We can see signs of strong correlation emerging by
looking at the entropy and multi–information in networks
of different sizes. If all cells were independent, the en-
tropy would be S1, exactly proportional to N . For weak
correlations, we can solve the Ising model in perturba-
tion theory to show that the multi–information IN is the
sum of mutual information terms between all pairs of
cells and hence IN ∝ N2. This is in agreement with the
empirically estimated IN up to N = 15, the largest value
for which direct sampling of the data provides a good
estimate (Fig 5a), and Monte Carlo simulations of the
maximum entropy models suggest that this agreement
extends up to the full population of N = 40 neurons in
our experiment (G Tkačik, ES, RS, MJB & WB, unpub-
lished). Were this pattern to continue, at N ∼ 200 cells
IN would become equal to the independent entropy S1,
and the true entropy SN = S1 − IN would vanish as the
system “froze.” Because we see variable firing patterns
of all the cells, we know that literal freezing of the net-
work into a single state doesn’t happen. On the other
hand, networks of N ∼ 200 cells must be very strongly
ordered. Interestingly, experiments indicate that a cor-
related patch on the retina has roughly this size: the
strongest correlations are found for cells within ∼ 200µm
of each other, and this area contains ∼ 175 ganglion cells
in the salamander (19).

Because the interactions Jij have different signs, frus-
tration can prevent the freezing of the system into a single
state. Instead there will be multiple states that are local
minima of the effective energy function, as in spin glasses
(36). If the number of minimum energy patterns is not
too small, then the system retains a significant repre-
sentational capacity. If the number of patterns is not too
large, then observing only some of the cells in the network
is sufficient to identify the whole pattern uniquely, just as
in the Hopfield model of associative memory (29). Thus
the system would have a holographic or error–correcting
property, so that an observer who has access only to a
fraction of the neurons would nonetheless be able to re-
construct the activity of the whole population.

We can see suggestions of this error–correcting prop-
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FIG. 5 Extrapolation to larger networks. (a) Average in-
dependent cell entropy S1 and network multi-information
IN , multipled by 1/∆τ to give bin–independent rates, vs.
number of cells in the network N . Theoretically we expect
IN ∝ N(N − 1) for small N ; the best fit is IN ∝ N1.98±0.04 .
Extrapolating (dashed line) defines a critical network size Nc,
where IN would be equal to S1. (b) Information that N cells
provide about the activity of the N + 1st cell, plotted as a
fraction of that cell’s entropy, vs. network size N ; each point
is the average value for many different groups of cells. Extrap-
olation to larger networks (dashed line, slope = 1.017±0.052)
defines another critical network size Nc, where one would get
perfect error–correction or prediction of the state of a single
cell from the activity of the rest of the network. (c) Exam-
ples of ‘check cells,’ for which the probability of spiking is an
almost perfectly linear encoding of the number of spikes gen-
erated by the other cells in the network. Cell numbers as in
Fig 1.

erty by asking directly how much the knowledge of activ-
ity in N cells tells us about the whether the N + 1st cell
will spike (Fig 5b). Our uncertainty about the state of
one cell is reduced in proportion to the number of cells
that we examine, and if this trend continues then again at
N ∼ 200 all uncertainty would vanish. Alternatively, we
can look for particular kinds of error correction. In our
population of 40 cells we have found three cells for which

the probability of spiking is an almost perfectly linear
encoding of the number of spikes generated by the other
cells in the network (Fig 5c); by observing the activity
of these “check cells” we can estimate how many spikes
are generated by the network as a whole even before we
observe any of the other cells’ responses.

VI. DISCUSSION

Returning to the general questions raised at the out-
set, we have seen that the maximum entropy principle
provides a unique candidate model for the whole net-
work that is consistent with observations on pairs of ele-
ments but makes no additional assumptions. Despite the
opportunity for higher–order interactions in the retina,
this model captures more than 90% of the structure in
the detailed patterns of spikes and silence in the net-
work, closing the enormous gap between the data and the
predictions of a model in which cells fire independently.
Because the maximum entropy model has relatively few
parameters, we evade the curse of dimensionality and as-
sociated sampling problems that would ordinarily limit
the exploration of larger networks.
Key ingredients in matching theory to experiment are

the focus on time windows in which the discreteness of
the neural responses is evident, low spike probabilities,
and weak but significant correlations among almost all
pairs of cells. None of these considerations are specific to
the retina. As a first test for the generality of thee ideas,
we have analyzed experiments on cultured networks of
cortical neurons (41), where again we find that the max-
imum entropy model captures over 95% of the multi–
information in groups of N = 10 cells (Fig. 2d).
The success of a model that includes only pairwise in-

teractions provides an enormous simplification in our de-
scription of the network. This may be important not
just for us, but for the brain as well. The dominance
of pairwise interactions means that learning rules based
on pairwise correlations (42) could be sufficient to gener-
ate nearly optimal internal models for the distribution of
“codewords” in the retinal vocabulary, thus allowing the
brain to accurately evaluate new events for their degree
of surprise (43).
The mapping of the maximum entropy problem to the

Ising model, together with the observed level of correla-
tions, implies that groups of N ∼ 200 cells will behave
very differently than smaller groups, and this is especially
interesting because the patch of significantly correlated
ganglion cells in the retina is close to this critical size
(19). Because the response properties of retinal ganglion
cells adapt to the input image statistics (44; 45), this
matching of correlation length and correlation strength
cannot be an accident of anatomy but rather must be
set by adaptive mechanisms. Perhaps there is an opti-
mization principle which determines this operating point,
maximizing coding capacity while maintaining the corre-
lation structures which enable error–correction.
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Although we have focused on networks of neurons, the
same framework has the potential to describe biological
networks more generally. In this view, the network is
much more than the sum of its parts, but a nearly com-
plete model can be derived from all of its pairs.

Methods

Electrophysiological Recording. Retinae from the
larval tiger salamander (Ambystoma tigrinum) and the
guinea pig (Cavia porcellus) were isolated from the eye
retaining the pigment epithelium and placed over a multi-
electrode array (19). Both were perfused with oxy-
genated medium: room temperature Ringers for sala-
mander and 36◦C Ames medium for guinea pig. Extracel-
lular voltages were recorded by a MultiChannel Systems
MEA 60 microelectrode array and streamed to disk for
offline analysis. Spike waveforms were sorted either us-
ing the spike size and shape from a single electrode (19)
or the full waveform on 30 electrodes (18). Recorded
ganglion cells were spaced no more than 500µm apart,
and were typically close enough together to have over-
lapping receptive field centers. This analysis presented
here is based on measurements of 95 cells recorded in 4
salamanders and 35 cells recorded in 2 Guinea pigs.
Visual Stimulation. Natural movie clips (NAT in

Fig. 3) were acquired using a Canon Optura Pi video
camera at 30 frames per second. Movie clips broadly
sampled woodland scenes as well as man–made environ-
ments, and included several qualitatively different kinds
of motion: objects moving in a scene, optic flow, and
simulated saccades; see Ref. 19 for details. In spatially
uniform flicker (FFF), the light intensity was randomly
chosen to be black or white every 16.7 ms. For most
experiments, a 20–30 s stimulus segment was repeated
many times; in one experiment, a 16 min movie clip
was repeated several times. All visual stimuli were dis-
played on an NEC FP1370 monitor and projected onto
the retina using standard optics. The mean light level
was 5 Lux, corresponding to photopic vision.
Cultured cortical networks. Data on cultured

cortical neurons were recorded by the laboratory of S.
Marom (Technion–Israel Institute of Technology) using
a multi–electrode array, as described in Ref. (41). The
data set analyzed here is an hour long epoch of sponta-
neous neuronal activity recorded through 60 electrodes.
Estimating information theoretic quantities. In-

formation theoretic quantities such as IN depend on the
full distribution of states for the real system. Estimat-
ing these quantities can be difficult, because finite data
sets lead to systematic errors (32). With large data sets
(∼ 1 hr) and N < 15 cells, however, systematic errors are
small, and we can use the sample–size dependence of the
estimates to correct for these errors, as in Ref. (33).
Constructing the maximum entropy distribu-

tions. For networks of modest size, as considered here,
constructing the maximum entropy distribution consis-

tent with the mean spike rates and pairwise correlations
can be viewed as an optimization problem with con-
straints. Because the entropy is a convex function of
the probabilities, and the constraints are linear, many
efficient algorithms are available (46).
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