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Modeling stochastic gene expression under repression
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Abstract

Intrinsic transcriptional noise induced by operator fluctuations is investigated with a simple

spin like stochastic model. The effects of transcriptional fluctuations in protein synthesis is probed

by coupling transcription and translation by an amplificative interaction. In the presence of

repression a new term contributes to the noise which depends on the rate of mRNA production. If

the switching time is small compared with the mRNA life time the noise is also small. In general the

dumping of protein production by a repressive agent occurs linearly but the fluctuations can show

a maxima at intermediate repression. Thediscrepancy between the switching time, the mRNA

degradation and protein degradation is crucial for the repressive control in translation without

large fluctuations. The noise profiles obtained here are in quantitative agreement with recent

experiments.

1 Introduction

The remarkable simplicity of the relation between genetic information and protein synthesis in the
ribosomes, resulting in a symmetrical and almost universal genetic code, is the result of a complex
process involving a large number of chemical reactions. The gene transcription is assisted by the enzy-
matic action of regulatory proteins which can enhance or repress the production of mRNA molecules.
The amino acid assembling in the ribosome ends the cycle and proteins are produced and folded to a
functional form. The pioneer work on lambda phage (1) have shown the crucial role of regulatory pro-
teins in the control of such genetic networks (2) and intense experimental and theoretical investigation
(3-13) have been dedicated to the understanding of this web of interactions.

A deterministic description of the whole process is hampered by the presence of a frequently small
number of molecules in the cell and a stochastic approach is in general unavoidable (14-15). Several
efforts have been directed to the numerical simulations of the genetic networks by considering the full
set of chemical reactions (13-16). Alternatively one can write down a set of dynamical equations for
protein concentrations followed by the inclusion of fluctuation by the Langevin mechanism (17-21).

A complete description of the cellular control mechanisms requires the understanding of the complex
system of gene interactions and alternative efforts have been directed to the identification of elementary
mechanisms to understand the random aspects of regulatory networks. A common feature of these
models is the use of the rates of each chemical reaction to construct Markov process. A first class of
models can be obtained by considering a single Poissonian model for transcription to be coupled to
stochastic translation (23). The role of intrinsic noise can be analyzed in this framework by assuming
an amplifier interaction designed to reproduced the observed protein bursts in translation (23-24).
Alternatively regulation can be investigated by considering an unique effective stochastic model for the
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combined transcription-translation processes. In this context repression arises naturally by considering
a spin like (27-28) or binary system (26) in the form of a switch. The advantage of spin like models is
the possibility to use the well established many body techniques (29). Recently exact solutions for the
Master equations of these system have been obtained in the case of an self interacting gene(30). In this
article we combine the two strategies by adopting a two state birth and dead coupled model for the
gene, in which the up state describes the free transcription of DNA while the down state represents
repressed transcription, to be combined to a second Marcov process for translation. In the absence
of repression our calculations reproduces the model presented in reference (23). The regulation by
an repressive environmental agent or protein concentration of another gene is fully considered in the
model.

The transcription probabilities obey the equations

dαn

dt
= k[αn−1 − αn] + ρ[(n+ 1)αn+1 − nαn]− hαn + fβn (1)

dβn

dt
= kχ[βn−1 − βn] + ρ[(n+ 1)βn+1 − nβn] + hαn − fβn (2)

The stochastic variable n describes, here, the number of mRNA molecules in the cell. The unrepressed
probability for RNA transcription is α(t,n) and β(t,n) represented the partially dumped state of the
switch. The RNA degradation rate in the cell is ρ with a life time T=1/ρ. The parameter k and χk are
the free and repressed transcription rate, respectively. The parameter h and f controls the repressing
efficiency of the switch. The capability of a protein to bind the repressor site is coded in the variable
h. It is proportional to average repressing protein number. The unbinding rate reducing the repressing
efficiency is f.

The effects of fluctuations on the mRNA population in the protein dynamics will be investigated
in section VI by coupling this birth and dead process to a stochastic variable describing protein
concentration. The generalization of this approach to a gene network requires the introduction of
more random variables and the corresponding interactions.

This article is organized as its follows. In section II we solve the model by the introduction of generator
functions. A single second order differential equation for the on state is obtained and reduced to the
canonical form. In section III the physical content of the model is exhibit by the introduction of the
relevant parameters describing the properties of the gene and environment. Simple expressions for the
distributions, mean values and fluctuations are also presented. The induced noise is studied in section
IV as a function of the switching time, transcription efficiency and repressing conditions. Microscopic
functions are presented in section V. In section VI we couple the transcription to translation by the
amplificative interaction of reference (23). The last section is dedicated to conclusions.

2 Master equations for repressed transcription

The discrete recursive equations implied in the master equations can be bypassed by the use of gener-
ating functions defined by (van Kampen, 1992)

α(z, t) =

∞
∑

n=0

αn(t)z
n β(z, t) =

∞
∑

n=0

βn(t)z
n (3)

The resulting master partial differential equations are
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∂α(z, t)

∂t
= (z − 1)[kα(z, t)− ρ

∂α(z, t)

∂z
]− hα(z, t) + fβ(z, t) (4)

∂β(z, t)

∂t
= (z − 1)[χkβ(z, t)− ρ

∂β(z, t)

∂z
] + hα(z, t)− fβ(z, t) (5)

which must be solved under the condition α(1, t)+β(1, t) = 1 to ensure probability conservation. The
moments can be easily obtained by the evaluation of this functions and its higher derivatives at z=1.
The full information about the system requires the calculation of the distribution functions by the
evaluation of derivatives at z=0:

αn(t) =
1

n!

dn

dzn
α(z, t) βn(t) =

1

n!

dn

dzn
β(z, t) (6)

This system is completely integrable due to the existence of Lie symmetries and the time dependence
can also be obtained analytically. Here we focus our attention in the stationary properties of the
system

(z − 1)(kαS + ρ
dαS

dz
)− hαS + fβS = 0 (7)

(z − 1)(χkβS + ρ
dβS

dz
) + hαS − fβS = 0 (8)

The coupled equation can be transformed in a single second order differential equation by replacing

βS =
1

f

[

ρ(z − 1)
dαS

dz
− (zk − k − h)αS

]

(9)

in equation (8). The resulting equation in the canonical form is

d2αS

dz2
+ p

dαS

dz
+ qαS (10)

where the functions p and q are given by

p =
(1− z)(1 + χ)k + ρ+ h+ f

ρ(z − 1)
(11)

q =
k2χ(z − 1)− k(ρ+ f + χh)

ρ2(z − 1)
(12)

The simple poles at z=1 and the asymptotic irregularity suggests solutions in terms of the hypergeo-
metric functions. In fact introducing the variable

η =
k(χ− 1)(z − 1)

ρ
(13)

and performing the transformation
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αS = exp (
k(z − 1)

ρ
)α̃(η) (14)

we obtain the Kummer equation

η
d2α̃

dη2
+ (b + 1− η)

dα̃

dη
− aα̃ = 0 (15)

with parameters

a =
h

ρ
(16)

b =
h+ f

ρ
(17)

The regular solution at z=1 (η = 0) can be written in terms of the Kummer M-functions

αS =
b− a

b
exp

(

k(z − 1)

ρ

)

M(a, b+ 1; η) (18)

resulting in an analogous equation for β

βS =
a

b
exp

(

k(z − 1)

ρ

)

M(a+ 1, b+ 1; η) (19)

A simple formula can also be obtained for the total probabilities

φS = exp

(

k(z − 1)

ρ

)

M(a, b; η) (20)

The advantage of the use of generating functions is the analytical elimination of the singular solution
(a U-Kummer function). In numerical calculations the presence of this component is the source of
numerical instabilities in the algorithm

3 The biological content of the model

The relevant information about the properties of the switch in the proteomic environment is specified
by two time scales

T =
1

ρ
τ =

1

h+ f
(21)

The mean life of the mRNA molecules in the cells is coded in T , it is typically of order of minutes. The
meaning of the switching time τ is related to the time evolution of the stochastic dynamics process.
In fact, a simple equations for the probabilities pα(t) and pβ(t) to find the gene free or repressed by a
protein in the operator site is obtained by setting z=1 in equations (1) and (2):
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dpα(t)

dt
= −hpα(t) + fpβ(t) (22)

dpβ(t)

dt
= +hpβ(t)− fpβ(t) (23)

summing Eq.2 over n with the use of probability conservation. The solution is:

pβ(t) =
h

h+ f
+ e−(h+f) t/ρ(pβ(0)−

h

h+ f
) (24)

The switching time is a intrinsic property of the gene. It doesn’t depends on the birth and dead
constants, k and ρ. The adimensional parameter

ǫ =
h+ f

ρ
(25)

contains the information about the flexibility of the gene switch. High values of ǫ corresponds to fast
switches reaching the equilibrium configuration before the gene transcription is stationary. As we show
above the average number of mRNA copies doesn’t depends on the switching time but the noise is
strongly affected by this parameter.

The influence of the environment on the gene transcription is measured by the asymptotic probability
to find the gene repressed

pβ =
h

h+ f
pα =

f

h+ f
(26)

In the limit pβ = 0 we recover the model presented in (23) with only one transcription mode and a
Poissonian distribution where N = k

ρ is the average number of mRNA copies. Highly repressed genes
belongs to the pβ = 1 sector where the mRNA transcription is suppressed or occurs in the repressed
mode (χ 6= 0). The parameter χ takes in account the possibility of a small rate of transcription in the
(partially) repressed mode. In summary, N measures the efficiency of the transcription. A gene with
a large value of N produce mRNA in abundance, in the absence of repression, but also can be damped
by regulatory proteins or an external factor to χN particles in average. Inefficient transcriptions as
occurs in certain genes of E.Coli, for example, corresponds to N around one or two, while in copious
transcription N increases an order of magnitude. The effects of the protein concentration or another
repressing factor is controlled by pβ which can be phenomenologically related to protein concentration
by a Hill function, for example. The relative switch frequency scales the capability of the gene to flip
from an arbitrary condition to it’s asymptotic value. The relevant features of the probabilities can be
obtained by inspecting the generator functions written in terms of these parameters:

αS = pαexp (N(z − 1))M(ǫpβ, ǫ+ 1;N(z − 1)(χ− 1)) (27)

for the up state

βS = pβexp (N(z − 1))M(ǫpβ + 1, ǫ+ 1;N(z − 1)(χ− 1)) (28)

for the down state
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φS = exp (N(z − 1))M(ǫpβ, ǫ;N(z − 1)(χ− 1)) (29)

for the total probability

In the absence of a repressive agent pβ = 0 and pα = 1, the Kummer function reduces to one and we
have a Poissonian process producing N mRNA copies in average. In general the generator function
is a power series on N, modulated by χ with coefficients depending of the repression parameter and
switching time via a Pochhammer function. If the gene interact with a stochastic factor, as in the case
of fluctuating proteins due to another gene, the parameters N, pβ and eventually ǫ should be considered
random functions of the corresponding proteomic field. In the model we have two different sources
for hampering or enhancing transcription. The transcription efficiency caused by the availability of
polymerases affects the free mean number N while the density of repressive proteins modifies pβ .

If we introduce a power series in the above equation we obtain recursion relations for a second order
Markov process for the total probability. The probability is obtained taking successive derivatives of
the generator function by the use of the Leibnitz rule and the formulas for the derivatives of Kummer
functions:

αn = pα(N)n
exp(−N)

n!

n
∑

s=0

(

n

s

)

(χ− 1)s
(pβǫ)s
(ǫ + 1)s

M(pβǫ + s, ǫ+ 1 + s;N(1− χ)) (30)

βn = pβ(N)n
exp(−N)

n!

n
∑

s=0

(

n

s

)

(χ− 1)s
(pβǫ+ 1)s
(ǫ+ 1)s

M(pβǫ+ 1 + s, ǫ+ 1 + s;N(1− χ)) (31)

φn = (N)n
exp(−N)

n!

n
∑

s=0

(

n

s

)

(χ− 1)s
(pβǫ)s
(ǫ)s

M(pβǫ + s, ǫ+ s;N(1− χ)) (32)

The Poisson distribution appears with an envelope function composed by a superposition of distri-
butions implementing the repression. In figure (1) we show a typical distribution for the efficient
transcription of gene producing N=40 mRNA copies. The repressed mode produces 20 of the free
mode (χ = 1/5). The gene is slow ǫ = 1/2. The α and β components are shown together with the sum
in the figure. The mean peak corresponds to the free production and the secondary to the repressed
transcription.

4 Mean values and noise

The closed form for the generator functions and the friendly properties of the Kummer functions allows
one to obtain simple formulas for all the distribution moments evaluating the derivatives at the point
z=1. The mRNA mean value produced in both models in the cell is

〈n〉 = N(pα + χpβ) (33)

It is linear in the gene efficiency N and in the repression parameter pβ. The switch life time do not
appear in the mean value. If we assume that the probability to find the gene in the on mode without
a binding repressing protein is related to the concentration by a Hill function

pα =
1

1 + (< m > /K)l
(34)

6



where K is the threshold concentration of the repressor agent and l is steepness factor, we obtain
the curves shown in Fig.2. The higher curve corresponds to a gene that can be transcripted poorly
even in the presence of the repressor agent (χ = 1/5). The free transcription is not affected by
low concentrations but will decay abruptly after the threshold concentration when the mean values
reaches it’s repressed value. The second curve describes a χ = 0 switch and after threshold there is no
transcription in the cell.

The possibility of repressed production causing the appearance of two peaks statistical distributions
requires the use of the moments of the on and off components. In this case the total mean value and
also the total fluctuation will have a limited meaning. However simple formulas can also be obtained
for the partial mean values:

〈n〉α = 〈n〉+
N(1− χ)pβ

1 + ǫ
(35)

〈n〉β = 〈n〉 −
N(1− χ)pα

1 + ǫ
(36)

The effects of the transcription efficiency and the switching frequency in the noise can be evaluated
from the standard deviation

〈n2〉 − 〈n〉2 = 〈n〉+
N2(1− χ)2pαpβ

1 + ǫ
(37)

In both limits pβ = 0, absence of repression, and pβ = 1, total repression, the stochastic process
is Poissonian. The square root deviation as a function of the repressing parameter pβ is shown in
Fig.3 for the copious transcription of a gene. The curves correspond to several values of the switching
frequency. For slow genes (small ǫ) the noise increases with the repressing parameter until maximal
fluctuations are reached for

(pβ)max =
1

2
−

1

2

1 + ǫ

N(1− χ)
(38)

After this limit the fluctuations will be smaller until a minimal value for total repression. In this case,
to reach the stationary configuration, the gene will intercalate on and off configurations many time
causing strong noisy in the copious transcription. We are describing the noise in terms of the mean
deviation instead of the Fano factor that is exhaustive used in physics. The two alternatives are of
course equivalent but the Fano factor measures the deviation from a Poisson distribution and don’t have
the intuitive appeal of the distribution width. For large values of ǫ corresponding to fast switches the
parabolic fluctuations will not reach the maxima and decreases monotonically. The repression drops
the mean value of the mRNA transcription and the fluctuations simultaneously. Inspecting equation
(37) we see the presence of a factor ǫ + 1 in the denominator responsible for the noise attenuation.
The disparity between the mRNA life time in the cell and the binding-unbinding characteristic time
leading to large values of ǫ ensures low fluctuations and silent transcription. In Fig.4 the fluctuations
of a poorly transcribed gene are shown. The enhancement of the noise is limited by the presence of
few mRNA copies in the cell and suppressed totally for fast switches. The critical switch time is

(ǫ)crit = N(1− χ)− 1 (39)

We should keep in mind that the abundant transcription of a gene requires the enzymatic action to
eliminate the unused messengers expending energy.
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5 Probabilities

The description of the random gene dynamics in terms of the two first moments are satisfactory for
local statistical distributions which is the most common case. The fluctuations will describe properly
the departure from the deterministic or macroscopic behaviour. However the possibility of repressed
production or the appearance of strongly non local probabilities requires the full knowledge of the
probability distribution. The solubility of the model allow us to investigate the behaviour of the
probabilities as a function of the biophysical parameters of the model.

The probabilities as a function of mRNA population for abundant transcription of a gene is shown in
Fig.3. We assume that without repression N=40 mRNA copies would be produced in the stationary
state. A small repressed production χ = 1/5 is also allowed. In Fig.3A the behaviour of a slow switch,
ǫ = 1/2, is investigated as a function of the repressor activity pβ. In the absence of repression we
see a Poissonian peak around n=40. The presence of moderated repression, pβ = 0.25 has three main
effects:reduces the Poissonian maximum, displaced toward lower population and creates a secondary
peak at lower population.The switch is been turned off by the action of the repressing factor. The
situation is already reversed by intermediate repression, the secondary maximum now is dominant
indicating that the transcription of the gene occurs only in the off, or partially repressed state. Under
strong repression pβ = 0.75 the Poissonian peak disappears totally and finally under a full repression
the gene is off been trancripted secondarily at low rates. Increasing the switching time will favour
the delocation of the probability as shown in Fig.3B. The free and the totally repressed curves are
the same as in Fig.3A but the intermediate curve pβ = 0.5 is widespread over the population. The
situation is even more dramatic if the gene is faster as is shown in Fig.3C. A plateau with equally
probable population appears under intermediate repression. The mean value and fluctuation have a
limited meaning in this case. In Fig.3C we can see the disappearance of the double peaks under any
repressive condition. Finally in Fig.3E and Fig.3F the probabilities recovers the Poissonian shape
and moves adiabatically under the repression action. In Fig.3E as a solitary wave keeping the shape
undisturbed and in the case of very fast switches (Fig.3F) decreasing the mean deviation until total
repression. The turn off of a gene by environmental repression is shown in Fig.4A for the case of
efficient transcription. We choose χ = 0 therefore there is no residual transcription in the off mode.
The first curve, incomplete in the plot, represents the Poissonian unrepressed distribution, and the
other shows the evolution of the probability for growing repression. A kink is formed for intermediate
repression (pβ = 0 centered around 30 < n < 40 separating the equally distributed probability region
from the null region. The peak concentrate at n=0 for pβ = 1) shows the total repression of the
transcription. The inefficient transcription is shown in figures 4B and 4C. The last corresponds to
high values of ǫ and shows the typical Poissonian behaviour. However in figure 4B we can see the
delocation of the statistical distribution typical of slow switches. In the set of figures, 5A, 5B, 5C,
we show the tridimensional plot of the probabilities as a function of ǫ for null, intermediate and total
repression. At intermediate repression the ǫ variation transform the double peak distribution at low ǫ
in a non-local function until the Poisson like behaviour reappears for fast switches. The critical value
of ǫ for which the fluctuation decreases without an enhancement of fluctuation is given by

In Fig.5 the probability surfaces are show as a function of the population and switching time for
unrepressed, intermediate and fully represses systems. The switching time can change considerably
the distribution pattern at intermediate repression.

6 Induced noise in protein production

The effects of the transcription fluctuations on the protein concentration can be investigate allowing
our probabilities to depend on a new stochastic variable m for the protein concentration. This will
be refrased in the language of generator functions by the appearance of a new continuous variable y
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and we will deal with a time dependent partial differential equation in both variables. Among a large
variety of probability conserving coupled partial equations the simplest is given by:

∂α

∂τ
= (z − 1)[Nα−

∂α

∂z
]− pβǫα+ pαǫβ + (y − 1)[σz

∂α

∂z
− η

∂α

∂y
] (40)

∂β

∂τ
= (z − 1)[χNβ −

∂β

∂z
] + pβǫα− pαǫβ + (y − 1)[σz

∂β

∂z
− η

∂β

∂y
] (41)

The parameters σ and η are equal to kP /ρ and ρP /ρ , respectively, where kP and ρP are the birth and
dead rates of the protein production effective reaction. This amplifier coupling reproduces the bursts
in protein production that are observed experimentally. For pβ = 0 the transcription is Poissonian and
the usual results are obtained. However in the general case both effects, the induced noise caused by
the coupling and the repressive noise are present. Although the full distributions are hard to obtain,
the moments can be recursively obtained by the tradition techniques (Kampen, 1992). The mean value
for protein concentration is

〈m〉 =
σN

η
(χpβ + pα) (42)

The adimensional parameter η is small, typically around 1/30 or less due to the discrepancy between
the time scales for transcription and translation. The mRNA free mean number N is amplified by a
factor σ/η. The fluctuations are

〈m2〉 − 〈m〉2 = 〈m〉+
σ2N

η(η + 1)

(

pα + χpβ +
Npαpβ(η + ǫ+ 1)((χ− 1)2)

(η + ǫ)(ǫ+ 1)

)

(43)

The terms on parenthesis are caused by the environmental repression. The relative frequencies ǫ and
η define three time scales for the phenomena. The switching time associated to the binding-unbiding
of proteins to the operator site is the smaller time in the problem. A second scale, one order of
magnitude higher, is defined by the mRNA degradation rate. Finally the protein degradation rate
is the slower reaction time. Ultimately the slow down of the noise in the global process is ensured
by the discrepancy of these scales and guarantee the precision in cellular reproduction. In Fig. 6 we
show the standard deviation in three cases with the parameters adjusted to give the same protein
mean concentration in the cell, (〈m〉 = 3200) in order to compare the two possible strategies. The
monotonically decreasing function shows the behaviour of the fluctuation for inefficient transcription
(N=4). The quadratic dependence of the variance on the protein parameter σ is responsible for the
large deviation in the absence of repression. The second curve correspond to N around 6 and ǫ=5.
The crossing point around pβ ≈ 0.5 correspond to states with the same mean number , fluctuation and
repression but with different switch velocities and production rates. In the third curve fluctuations are
enhanced parabolic by low repression until a maxima is obtained. Beyond this value the deviation is
attenuated until the system is off. For intermediate values of pβ both process are equivalent resulting
in comparable mean values and noise. Finally we consider a gene with an increasing activity by an
inductor A concrete example is a tetracicline repressor under the control of IPTG in E. Coli. This
gene have been used as a part of a synthetic gene cascade in recent experiments. Instead of the mean
square root deviation of fano factor we display the noise using the quantity

∆2 =
〈m2〉 − 〈m〉2

〈m〉2
(44)

We relate the model parameter pα with the repressor concentration by a Hill function
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pα =
(c/k)θ

1 + (c/k)θ
(45)

where c is the concentration an k a parameter. The protein mean value and the corresponding noise
are shown in figure 7.A and 7.B and have been obtained replacing pα from equation (45) in equations
(42) and (43), respectively. It is remarkable the agreement between the concentration and the noise
profiles with the experimental data of reference (25). In the present case we have single gene, global
fluctuation have been discarded and pα depends only on the mean concentration of the inductor. In
figure 8.A and 8.B we show the opposite situation in which the concentration decrease and the noise
increases. We can see in the figure a maxima in the fluctuation for intermediate concentrations. Again
the profile is similar to experimental results even under the the mentioned differences and restrictions.

7 Conclusions

The hampering of noise in genetic networks by the action of regulatory proteins is supported by some
experiments and also by the common intuition that repression slow down fluctuations. However this
is not a mandatory rule. The presence of fluctuations is governed by the transcription efficiency of
the gene, by the repressor concentration but also by the switching time describing the gene agility to
interchange from a repressed state to a free mode. These components combined in a simple stochastic
model for repressed transcriptions allow us to establish conditions for the occurrence of noise in a
elementary network component.

The transcription of a gene at slow rates is silent even if the gene switch turn off slowly. The repres-
sion agent decreases the fluctuations in accord to the concentration of the controlling factor. In the
common case of fast switches the microscopic distributions are Poisson-like and the flip-flop of the
gene configurations induced by repression will cause small corrections.

In the opposite case when the transcription is copious the mRNA population fluctuates in the cells
strongly in the case of slow switches. The noise is smaller than in the unrepressed case only for ultra
fast switches revealing the fundamental role of the time switch in the dynamics of the noise.

The microscopic probabilities obtained due to the integrability of the coupled Markovian process
shows non-local, broad bands population distributions under highly noisy conditions. The possibility
of partial repressed transcription allowed in the model causes the appearance of double peaks in the
probabilities due to the repressed and free transcription.

The two fundamental mechanisms which causes the decreasing in transcription rates, the shortage of
polymerases and the presence of a repressor agent affects the fluctuations differently. In the first case
the average mRNA population decreases homogeneously with the gene efficiency parameter. In the
second case we see the parabolic dependence with the repression parameter.

The coupling of the transcription to translation by the amplifying mechanism reproduces the occur-
rence of protein bursts under repression with a rich noise structure.

Our model is minimal in the sense that: (i) It is a simple and soluble second order stochastic model
for repressed transcription.(ii) The introduction of two states for the gene contemplating the repressed
transcription introduces the two time scales involved in the process. (iii) The effects on translation
proceeds by minimally coupling the transcription to protein production. (iv) Gene interactions and
auto regulation can be implemented by allowing fluctuations in the model parameters.

The evolutionary requirements of noise to enforce differentiation, prompts the need of experiments,
beyond the poorly transcribed genes, as maltT of E.coli, designed to probe the noise in copious
transcription.
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The comparison of our model with experiments shows a good agreement even considering the the
limitations of our single gene treatment to explain the observed cascade effects under global noise.

Acknowledgment: J.E.M. Hornos wishes to thanks to J.N. Onuchic for the introduction into the field,
P. Wolynes for helpful discutions and W. Arber for the memories on lambda phage experiments.
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