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Co-transport-induced instability of membrane voltage in tip-growing cells
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A salient feature of stationary patterns in tip-growing cells is the key role played by the symports
and antiports, membrane proteins that translocate two ionic species at the same time. It is shown
that these co-transporters destabilize generically the membrane voltage if the two translocated ions
diffuse differently and carry a charge of opposite (same) sign for symports (antiports). Orders of
magnitude obtained for the time and lengthscale are in agreement with experiments. A weakly
nonlinear analysis characterizes the bifurcation.
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Spatiotemporal pattern formation of the electric mem-
brane potential in cells and tissues emerges from collec-
tive dynamics and activity of membrane ion channels.
Action potential and cardiac excitation spiral waves are
paradigmatic examples of nonstationary pattern forma-
tion [1, 2]. Stationary patterns of ionic currents are
widespread in fungi, plant cells (algae for example), pro-
tozoa and insects: Chara corallina, Fucus zygote and
Achlya are the model cells [3, 4]. Such patterns are cor-
related to cell polarization, apical growth, morphogenesis
and nutrient acquisition. The characteristic wavelengths
and times vary from a few millimeters to ten microns
and from one hour to one minute, respectively. These
times correspond typically to a membrane protein or an
ion diffusive time. Two mechanisms have been proposed
[5]: one based on the electromigration of membrane pro-
teins [6, 7, 8, 9, 10] and the other resulting from a nega-
tive differential conductance characterizing voltage-gated
channels [11, 12, 13].

However, the origin of current patterns is still un-
clear in tip-growing cells where transcellular currents are
mainly produced by the pump and a co-transporter, a
membrane carrier that translocates two species of ions
at the same time [14, 15] (see Fig. 1). Three points
of view are proposed by biologists for tip-growing cells:
ionic currents may be a consequence of cellular growth, a
self-organized pattern coupled to growth or, alternatively,
arise as a self-organized pattern which precedes cellular
growth [16]. The appearance of a lateral branching pre-
ceded by an inward current supports the hypothesis of
self-organization in Achlya [15]. The mechanisms pro-
posed in the literature cannot explain such patterns [17].

In this letter, we ask the broader question: how does
the stability of the membrane voltage depend on co-
transporters? Only the contribution of channels to mem-
brane voltage instability has been investigated in the lit-
erature. We demonstrate here that the voltage along a
membrane containing co-transporters is linearly unstable

FIG. 1: The pump (not drawn) generates a gradient of the
electrochemical potential through the membrane by translo-
cating continuously one species of ions (grey disk). This
stored free energy is used by the symport, a co-transporter,
to transfer a second species of ion (black disk) or nutrient
against its own gradient if necessary. The stoechiometry of
the drawn symport is equal to 2: two grey disks for one black
disk.

on a diffusive (not electrical) characteristic time. The fi-
nal pattern is a stationary modulation of ionic concentra-
tions, membrane voltage and transcellular ionic currents.
The mechanism is specific to this kind of carriers since
each ionic transporter is characterized by a positive dif-
ferential conductance.
Consider two ions 1, 2 of valence numbers zj and con-

centrations Cj , diffusing along a cylindrical cellular mem-
brane of radius r. As in the cable model, the electrody-
namics is governed by a one-dimensional electrodiffusive
equation for each ion:

∂tCj = Dj∂
2
xCj+zj(eDj/kBT )∂x(Cj∂xV )−(2/r)Jj (1)

and the capacitive relation for the membrane voltage V :

V = V0 + (Fr/2Cm)(z1(C1 − C10) + z2(C2 − C20)) (2)

whereDj is the diffusion coefficient of ion j, V0 the resting
membrane potential (≈ −0.1 V), Cm the specific mem-
brane capacitance (≈ 0.01 Fm−2) and Cj0 the concen-
tration of ion j in the resting state. The standard ca-
ble model is recovered simply from (1-2) when all ionic
diffusion coefficients are identical. In our model, the
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fluxes Jj take into account the intracellular chemical re-
actions as well as the membrane fluxes through pumps,
co-transporters, channels and uniports. The pump uses
chemical energy (ATP) to translocate ions from one side
to the other (the 1-ion in this Letter), generating an elec-
trochemical potential gradient through the membrane:
for example, H+-ATPase in plant cells. Consequently,
the 1-ion is a cation. Co-transporters use this stored free
molar energy to transfer one 2-ion for n 1-ions in the
same (opposite) sense for the symport (antiport) carrier
(see Fig. 1). In practice, the stoechiometry n is equal to
either 1 or 2. In tip-growing cells, the 2-ion is often an
essential nutrient for future vegetal metabolism and con-
sequently, implied in many chemical processes based on
enzymatic binding reactions: metabolism in Achlya hy-
phae with the methionine (an amino acid) uptake or the
carbon dioxide supply to chloroplasts for photosynthesis
in Chara corallina by HCO−

3 entry. Finally, the flux Jj
of each ion j is:

J1 = Jpch + nJs, (3)

J2 = ±Js + αC2 + JNL
2 (4)

where Jpch is the flux through active pumps and pas-
sive channels translocating the 1-ion, ±Js (nJs) is the
flux of the 2-ion (1-ion) through the co-transporter, and
JNL
2 is the (concentration-dependent) nonlinear part of

J2, due to intracellular chemical processes. The mecha-
nism of the (linear) voltage instability does not depend
on the functional form of JNL

2 . The characteristic ki-
netic constant α of nutrient uptake is necessarily positive.
The sign ± is + for a symport and − for an antiport.
In the following, we consider the case of the symport
but the extension to that of the antiport is straightfor-
ward. For simplicity’s sake, Jpch and Js do not depend on
concentrations and vary linearly with the membrane po-
tential V , characterized by their positive conductances:
Gpch = z1F (∂Jpch/∂V ) and Gs = z1F (∂Js/∂V ). Even
if a co-transporter is often called a secondary active car-
rier, its working is passive. Consequently, the differential
conductance of the current through the co-transporter,
(n+ z2/z1)Gs is always positive (positive Onsager coeffi-
cient). Then, there is no local positive feedback provided
by protein characteristics. In the homogeneous resting
state, Jj = 0 for each ion: the molar flux Js0 of the nu-
trient uptake in the resting state may be nonzero. Equa-
tions (1-4) are scaled with dimensionless coordinates for
space x′ = x/λ and time t′ = t/τ with the cable length
characteristic of the pumps and channels (primes are then
dropped for simplicity), λ2 = rγ/2Gpch and the diffusive

time τ = D̃λ2/D1D2, where γ is the bulk ionic conduc-

tivity and D̃ = δ1D1 + δ2D2 is the mean coefficient of
diffusion. We set δj = z2jCj0/(z

2
1C10 + z22C20) equal to

0.5 in all the following.
The control parameter µ is the positive conductance

ratio, µ = Gs/Gpch that controls the ionic membrane
fluxes. The stability of the homogeneous equilibrium
state is analyzed by considering the evolution of fluctua-
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FIG. 2: The neutral curve µ0(k) is defined by σ(µ0(k); k) = 0
and has a minimum at (kc;µc). Above the critical control
parameter µc, the membrane voltage is unstable. Parameters
are: n = 2, z1 = 1, z2 = −1, D1 = 10−5cm2s−1, D2 =
10−7cm2s−1 (common for the three neutral curves), and β1 =
0.1(-), β1 = 0.2(- -) and β1 = 0.3(..).

tions of voltage V and ionic concentrations Cj and con-
sequently, the linearized equations of (1-4): δH(x, t) =
δH0e

st+ikx where k is the wave number of the perturba-
tion and H refers to V and Cj . Two real solutions for
s = s(k) are determined: Im(s) = 0, Re(s) = σ(µ; k).
The first one is the well-known fast capacitive relaxation.
The second one yields the growth rate of the instability:

σ(µ; k) = −
k4 + D̃

D1

k2
(

1 + µ
(

n+ D1z2
D2z1

))

k2 + 1 + (n+ z2/z1)µ
(5)

−
β1

D2

(D̃ −D2)k
2 + (D1 −D2)(1 + nµ) D̃

D1

k2 + 1 + (n+ z2/z1)µ

where β1 = αγ/Gpch(D1 − D2) is dimensionless. Since
the capacitance does not appear in (5), this characteristic
(inverse) time is diffusive. From σ(µ0(k); k) = 0, the
neutral curve µ0(k) is determined and has a minimum
defining the critical values of the control parameter µc

and the wavenumber kc (Fig. 2):

µc =
−D1D2

D̃(z2D1/z1 + nD2)

(

2k2c +
D̃

D1

+ β1(
D̃

D2

− 1)

)

(k2c−k20)
2 = k40+

β1D̃

D1D2

(D1−D2)+k20

(

D̃

D1

+ β1(
D̃

D2

− 1)

)

where k20 = −nβ1(D1 −D2)/(z2D1/z1 + nD2). The par-
ticular case α = β1 = 0 corresponds to a long-wavelength
instability (kc = 0), and will not be treated here [9].
For µ > µc > 0, the growth rate is positive in a

finite range of wavenumbers. The limit case of small
binding reactions may help clarify the nature of this in-
stability. For small but nonzero β1, the homogeneous
resting state is unstable (σ > 0) against spatial pertur-
bations if 1 + µ(n + D1z2/D2z1) < 0. Recalling that
0 ≤ n + z2/z1, two necessary conditions for instability
are D1 > nD2|

z1
z2
| and z2/z1 < 0 [18]. The former is

generally verified since binding reactions reduce notably
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the effective diffusion of the 2-ion [19]; the latter is ful-
filled for the symports H+/HCO−

3 in Chara corallina and
H+-methionine in Achlya. For large control parameter µ
and small β1, the wavelength λp of the pattern satis-

fies: λp ≈ 2π(rγD2/2GsD̃)1/2 ≈ λcable(D2/D̃)1/2 where
λcable is provided by the cable model and may be experi-
mentally measured by two impaled electrodes. An order
of magnitude of λp can thus be evaluated. In Achlya hy-
phae, some measurements indicate λcable ≈ 2 mm [20].
On the basis of measurements of the effective diffusion
of the calcium ion, a reasonable value for the diffusion
coefficient of the 2-ion is D2 ≈ 10−7cm2/s. We thus ex-
pect a characteristic pattern wavelength λp ≈ 100µm, in
agreement with experiments. The characteristic time τp
required to produce the pattern is of the order of a dif-
fusive time: τp ≈ λ2

p/D2, dominated by the slower ionic

diffusion. Using the previous values, we find τp ≈ 103s,
in agreement with experiments on Achlya hyphae [3].
Equations (1-4) have been solved numerically for a

large range of parameters to confirm the previous results.
For simplicity, the nonlinear flux JNL

2 is given by a trun-
cated expansion in powers of the concentration of the
2-ion:

JNL
2 = C20

∑

j=2,3

αj((C2 − C20)/C20)
j (6)

This form generalizes the expansion of a Michaelis-
Menten enzyme kinetics term in the limit of large
Michaelis constant: our goal is to take into account at
a phenomenological level some of the complexity due
to the function of the 2-ion. The coefficient α3 must
be positive to ensure nonlinear convergence. The sim-
ulation depends on two additional dimensionless pa-
rameters: β2 = γ2|V0|α2/(z2FGpchC20(D1 − D2)

2) and
β3 = γ3|V0|

2α3/((z2F )2GpchC
2
20(D1 −D2)

3). Generally,
the voltage relaxes to zero on a characteristic capaci-
tive time, as expected from the cable model. However,
for relevant parameters characterizing a symport, a cel-
lular pattern of voltage and concentrations appears af-
ter a transient whose duration is of the order of mag-
nitude of the diffusive time τp (Fig. 3). Outer and in-
ner transcellular currents flow periodically through the
membrane. It has been established that the ohmic part
IOhm of the dimensionless extracellular current normal
to the membrane is given by the relation: IOhm =
D̃(I1/D1+I2/D2)/Gpch|V0| [12]. An outer (inner) ohmic
current corresponds to an hyperpolarized (depolarized)
band in agreement with experiments (Fig. 3). The outer
current has a characteristic M-shape, observed in Chara
corallina. Varying the nonlinear parameters, it is possi-
ble to obtain a M-shape only for the inner current or for
both.
The stationary bifurcation is further characterized by

a weakly nonlinear analysis performed in the vicinity of
the threshold (kc;µc) [2]. An arbitrarily small expansion
parameter ǫ is introduced to separate the fast and slow
scales in the problem. We define the slow independent
variables X = ǫx and T = ǫ2t, and Taylor-expand the
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FIG. 3: Parameters are the same as in Fig. 2, with in ad-
dition µ = 0.25, β1 = 0.1, β2 = 0.1 and β3 = 5. A: The
final stationary pattern is a modulation of the dimensionless
membrane potential (V − V0)/|V0| (-) and of the dimension-
less ohmic part IOhm (- -) of the extracellular current. An
hyperpolarized membrane potential (V − V0)/|V0| < 0 corre-
sponds to an outer ohmic current (electric field) in agreement
with experiments made with the vibrating probe. B: Tempo-
ral evolution of the extracellular current IOhm at the position
x = 12.5. The characteristic time is an ionic diffusive one.
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FIG. 4: The tricritical line g = 0 separates domains in the
reduced parameter space (D2/D1;β3) where the bifurcation
is supercritical (g > 0) and subcritical (g < 0). The fixed
parameter values are the same as in Fig. 3.

concentrations Cj , membrane voltage V and control pa-
rameter µ in powers of ǫ. The resulting equations are
then solved recursively for each power ǫi. The solvability
condition (Fredholm alternative) at third order provides
the amplitude equation:

τ0∂TA = µ̄A+ ξ20∂
2
XA− g|A|2A, (7)

where µ̄ = (µ − µc)/µc is the reduced control param-
eter. The time and lengthscale τ0 and ξ0 of the pat-
tern’s slow modulations close to the bifurcation may
also be derived directly fom the dispersion relation (5):
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µcξ
2
0 = 1

2

(

∂2µ0

∂k2

)

c
and τ−1

0 = µc

(

∂σ
∂µ

)

c
[2]. The coeffi-

cient g of the nonlinear term is a complicated function of
the physical parameters. The bifurcation is supercritical
(resp. subcritical) for positive (resp. negative) values of
g. In the idealized case described here, and for typical
parameter values, a tricritical line g = 0 separates the
two types of bifurcation in parameter space (see Fig. 4).
In conclusion, we established that a spatially homo-

geneous membrane voltage is linearly unstable if the co-
transporters play a role in the control of the electrophys-
iological properties of a cell. The final stationary pattern
is a transcellular current bearing various ionic species. As
opposed to many other scenarios leading to spatiotem-
poral pattern formation in ionic currents [1, 11, 12], a

negative differential conductance is not required. A nec-
essary ingredient is the slow intracellular diffusion of one
of the two ions translocated by the co-transporter. In-
terestingly, this is often the case in experiments. This
mechanism may explain how a cell can uptake an essen-
tial nutrient at precise locations: in Achlya, methionine
enters at the tip during apical growth.
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