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Abstract  

By considering the energy cost of messages carried by proteins as proportional to their 

information content we found experimental proof that proteins from all living organisms tend 

to have their estimated semantic content of information per unit mass, statistically, close to a 

constant. Thus, in the message carried by proteins −to achieve minimum energy waste− the 

rate of information content per unit mass tends to be optimized in living organisms.  The 

experimental evidence of this new information law resembles a marathon where highly 

optimized proteins correspond to advanced runners followed by a main bunch and the 

stragglers −lowly optimized proteins. Our results suggest the existence of a continuous 

optimization process that living organisms had to face, in which a compromise between 

biological functionality, economic feasibility and the survival requirements is established. 
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1. Introduction 

In information theory proteins are usually considered messages. A one-dimensional genetic 

message is recorded in a sequence of amino acids which fold up in a three-dimensional active 

protein [1, 2]. So their information content has been estimated by multiple researchers [1, 3]. 

Shannon in 1948 established information theory as a mathematical theory of communication 

[4]. In the second paragraph of his classical paper it is pointed out that: Frequently the 

messages have meaning; that is they refer to or are correlated according to some system with 

certain physical or conceptual entities. These semantic aspects of communication are 

irrelevant to the engineering problem. About this Yockey said: Shannon is explaining that 

your telephone system can send or receive your message without having to understand a word 

you say because the sequence comprising the message need not have any meaning for the 

communication system. The communication system is just as successful when transmitting 

gibberish accurately between two points as it is when transmitting speeches from Shakespeare 

[5]. Evidently, the semantic content of a message does not modify the telephone system’s 

state. This is not, however, the situation found in proteins. A protein is not only considered a 

message, it is also a receiver device that can alter its state when its message is changed. Just a 

one “letter” change − an amino acid change− in a protein message may be sufficient to alter 

its structure and function (e.g. see the mutation databases in: 

http://www.genomic.unimelb.edu.au/mdi/dblist/dblist.html). 

In addition, proteins also have been considered molecular machines and even molecular 

automata [6-10]. This means that, proteins are molecular devices where hardware and 

software function in concert. As a result, the software information value should be 

proportional to the hardware energetic cost. Following this claim, here we show that a new 

information concept, the value of protein information, allows us to express the semantic 



content of protein information [11], revealing a strong correlation between the protein 

molecular weight and the value of protein information.  

2. Theoretical Model 

Firstly, we devoted ourselves to finding a new approach to express the semantic content of 

protein information. Our starting point is the recently revealed Boolean structure of the 

genetic code [12, 13]. This Boolean structure led to a new point of view of the genetic 

information system as a Boolean information system. In this information system, the base 

sequences are written in an alphabet of four letters (four DNA bases) while the amino 

sequences are written in an alphabet of twenty letters or 20 amino acids [2].  Therefore, the 

DNA base triplets - codons- in the sequence can be similar to words and the synonymous 

codons coding for the same amino acid can act as words with the same meaning. From this 

point of view the amino acids become the meaning of the codons and we could then refer to 

the biological value of this meaning. 

2.1. The value of protein information 

Like Shannon we regarded the generation of a message to be a Markov process [4].  In 

particular, we considered the amino acid sequence as a message where every word is 

generated according to its deduction probability by a discrete information source represented 

by a first order Markov chain. This means that the deduction probability of the amino acid ak 

= i in the position k depends only on the amino acid ak-1 = j found in the previous position k-1 

in the amino acid sequence. This is expressed by conditional probabilities p(ak = i | ak-1 = j). In 

addition, if we suppose that probabilities p(ak = i | ak-1 = j) are independent of the positions, 

i.e. if p(ak = i | ak-1 = j) = p(i | j) then, these are computed as: 

p(i | j) = p(i, j)/p(j) = n(i, j)/n(j) 



where p(i, j) and n(i, j) are the joint deduction probability and the number of joint deductions 

of amino acids i and j from the genetic code codons, respectively,  p(j) and n(j) are the 

deduction probability and the total deductions for amino acid j [14].  

Next, the deduction probabilities p(i | j) allow us to define a new concept, the value of 

protein information. Following Volkenshtein’s original idea, the information value should 

express the measure of the non-substitutional character of information as well as the measure 

of its non-redundancy in the biological phylogenetic and ontogenetic development [11]. 

Amino acid deductions have a physicochemical meaning [13]. What‘s more the number of 

deductions is associated to the number of codons assigned to each amino acid (synonym 

quota) and the non-substitutional character of their information in the molecular evolution 

process. As a result, for each fixed amino acid the redundancy degree of its information is 

suggested by the number of its total deductions. Thus, the value of information eventually 

decreases with the increase of this number. This analysis led us to define the value of amino 

acid information in a previous paper [14]. Now, we define the value of protein information 

(V(x)) as:      

V(x) = - Log4 px 

Where px is the deduction probability of the protein x. According to our Markovian 

information source model, px is computed as: 

px = p (a1) p(a2 | a1) p(a3 | a2)… p(an | an-1) 

 The choice of a logarithmic base corresponds to the choice of a unit for measuring the 

value of information. If base 4 is used, the resulting units may be called tetra-digits, or more 

briefly teds. If we want to express the value of information in bits, base-2 logarithm must be 

taken.  



The protein information value should express the semantic content of the information, 

ignored by the classical information theory. The protein information value is not a measure of 

the biological value of protein for the cell. The semantic content of protein information has 

sense only to the receiver, i.e. to the protein itself.  

2.2. Energy cost of the protein message and Value of protein information 

Next, in terms of cellular economy a protein should carry just the maximum semantic 

content of information (V(x) with minimum energy cost (E(x)). Since any molecular machine 

must dissipate at least ε = kTLn(2) of energy (about 3 ×10-21 Joule at room temperature) for 

each bit of information it erases or throws away [7, 15-17] the energy cost of information 

carried by a protein can be supposed to be equal to:   

E(x) = ½ ε V(x)   (1) 

At the same time, because the protein environment in the cell can be considered a thermal 

bath, the energy cost E(x) should be equal to the maximum oscillation energy of the protein x 

in a thermal bath. That is to say, equation (1) should state an energy limit for protein 

oscillation in a thermal bath. So we have: 

E(x) = ½ MW(x) v2
max   (2) 

where MW(x) is the molecular weight of the protein x and vmax is the maximum oscillation 

velocity reachable by any protein at temperature T. As a result, combining equation (1) and 

(2) we have:  

V(x) = v2
max/ε MW(x)   (3) 

Explicitly, in any molecular machine, where “hardware” and “software” function as one, 

the semantic content of information is proportional to its molecular weight. At constant 

temperature, equation (3) is equivalent to the equality:  

V(x)/MW(x) = v2
max/ε = constant (3') 



3. Results  

Next, we will see that equation (3) is supported by the experimental data. The classical 

ordinary least square method was applied to estimate the coefficients of a linear regression 

[18]:  

V(x) = v2
max/ε MW(x) + c + δ  (4) 

where v2
max/ε and intercept c had to be estimated and δ was  the model error. In the linear 

regression analysis firstly, the intercept c was not considered significant (p > 0.364) −in 

equation (4)− and then, the final model was: 

V(x) = v2
max/ε MW(x) + δ (5) 

The statistical model (5) corresponds to the theoretical equation (3). Figure 1 shows the 

linear regression analysis of V(x) versus MW(x) in a sample of 805 varied proteins sequences. 

The adjusted R square is 0.99986 and the proportional constant v2
max/ε is 19.56354547416 

teds mol/kg (MW(x) in units of kg/mol) or 2.35628690364 × 1025 bits/kg. The regression 

hypothesis of the normal distributions of residuals was verified with the One-sample 

Kolmogorov-Smirnov normality test.  
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Figure 1. Regression of the value of protein information (V(x)) versus Molecular 
weight.(MW(x)) for 805 proteins. 

 



Table 1. Statistics of the linear regression through the origin of the V(x) versus MW(x) for 805 
proteins a. 

Unstandardized 

Coefficients 

95% Confidence Interval for 

B 

Adjusted 

R Square 

Durbin-

Watson 

Β Std. Error 

t Sig. 

Lower 

Bound 

Upper 

Bound 

19.56354547 0.00820966 2382.991 0.000 19.54743058 19.57966037 0.9998583 1.97618

One-Sample Kolmogorov-Smirnov Test for Standardized Residuals 

Kolmogorov-Smirnov Z  0.7415 

Asymp. Sig. (2-tailed)  0.6414 

Monte Carlo Sig. (2-tailed)  0.6283 

Lower Bound 0.6159 Sig.99% Confidence 

Interval Upper Bound 0.6407 

a The regression coefficient is highly significant (p < 0.000), there are not autocorrelation of residuals (Durbin-
Watson coefficient is close to 2 and Box-Ljung Q = 0.103 with a p > 0.748 ) and their normal distribution is not 
rejected (p > 0.5). The model with an intercept has the constant not significant (p > 0.364). 

 

The statistics applied for the analysis of the serial correlation in the residuals were Durbin-

Watson d test and Box-Ljung Q statistic. All these statistics are presented in Table 1. In a 

starting sample of 956 proteins, for some of them the standardized regression residuals are 

greater than two standard deviations (they are outliers). However, the regression coefficient 

and the adjusted R square are not sensibly affected and keep their values close to the one 

reported. When we excluded these exceptional proteins in the regression analysis, we found 

−in remainder of 805 proteins− that residuals complied with the regression hypotheses (see 

Table 1).  

 

Next, for a sample of 956 proteins the behavior of the rate V(x)/MW(x) was analyzed by 

means of One-sample Kolmogorov-Smirnov normality test. For the Kolmogorov-Smirnov Z 



value the asymptotic and the Monte Carlo two-tailed signification were estimated. According 

to equation (3') it is expected that this rate should statistically equal to a constant. 

We found deviations from the normal distribution produced by a small number of proteins 

with high and low rate values. Without these extreme values the remaining sub sample of 915 

proteins followed a normal distribution with a mean of 19.5298805 teds mol/kg and 95% 

confidence interval: upper bound 19.5054295 and lower bound 19.5543309. Thus in this 

sample the rate was statically close to a constant according to what was expected in equation 

(3') (Table 2).  

Besides this, a similar behavior was found in a sample 211 protein sequences of 

Cytochrome C from different living organisms but with a mean rate value of 20.327259064 

teds mol/kg and 95% confidence interval: upper bound 20.285101445 and lower bound 

20.369416721. 

The specific effect of mutational events over the rate V(x)/MW(x) −in a wild type gene− 

was also analyzed in a sample of 416 mutant DNA sequences of HIV-1 protease gene 

(previously translated to proteins).A similar result was observed with a mean rate value equal 

to 20.053628119 teds mol/kg and 95% confidence interval: upper bound 20.039997268 and 

lower bound 20.067258970 (see Table 2). 

 

All samples of proteins and DNA sequences used in the statistical analyses were taken 

from the NCBI database at http://www.ncbi.nlm.nih.gov. The DNA sequences were translated 

into proteins to be used. All these sequences and the probabilities used to compute the value 

of protein information are available as supplementary material on the journal’s web site. 

 
 
 



Table 2. One-sample Kolmogorov-Smirnov normality test for the rate V(x)/MW(x) for 
proteins and Cytochrome C from multiples living organisms and for HIV-1 protease a. 
  Proteins Cytochrome C HIV Protease 

N  915 211 416 

 Median 19.5287569 20.292384432 20.051671545 

Mean 19.5298805 20.327259064 20.053628119 Normal Parameters 

Std. Deviation 0.37685868 0.3106414676 0.1414337699 

Extreme Values Minimum 18.5204075 19.414553114 19.654524650 

 Maximum 20.4855354 21.368799403 20.483060580 

Lower Bound 19.5054295 20.285101445 20.039997268 95% Confidence Interval for Mean 

Upper Bound 19.5543309 20.369416721 20.067258970 

Kolmogorov-Smirnov Z  0.52883607 0.8712164163 0.4760935903 

Asymp. Sig. (2-tailed) Sig. 0.94246125 0.4336739182 0.9772173762 

Monte Carlo Sig. (2-tailed) Sig. 0.9412 0.4141 0.9716 

Lower Bound 0.93514036 0.4014123409 0.9673212190 99% Confidence Interval 

Upper Bound 0.94725964 0.4267876591 0.9758787810 

a The samples of  proteins All these sequences are available as supplementary data on the journal’s web site. 

 

3.1 Stochastic Simulation 

6422 arbitrary proteins were taken from the web site   http://www.ncbi.nlm.nih.gov/entrez/ to 

compute the joint frequency matrix of amino acid pairs. From this matrix were obtained the 

marginal probability vector and a conditional probability matrix. Next, a simple Markov 

Chain Monte Carlo algorithm without acceptance probability restriction was used to generate 

1900 random protein sequences. As we can see in Table 3 there is not statistical difference 

between the regression coefficients of this random sample (19.528827873) and the sample of 

915 natural proteins (19.5287569) presented in Table 2. 



Table 3. Statistics of the linear regression through the origin of the V(x) versus MW(x) for 
1900 random protein sequences generated by means of  a simple Markov Chain Monte Carlo 
algorithm without acceptance probability restriction.  
Unstandardized 

Coefficients 

95% Confidence Interval 

for B 

Adjusted 

R Square 

Durbin-

Watson 

Β Std. Error 

t Sig. 

Lower 

Bound 

Upper 

Bound 

19,528827873 0,0041832 4668,421 0.000 19,521 19,537 0,9999 1,992 

 

4. Discussions 

The correlation found is the manifestation of a new statistical protein information law. The 

law expresses the solution to an optimization process that living organisms had to face. In the 

molecular evolution process for the vast majority of proteins in living organism the ratio 

between the value of protein information and their mass (V(x)/MW(x)) tends to be statistically 

close to a constant value. In practice this phenomenon resembles a marathon where first are 

found advanced runners, next, the main bunch and finally, the stragglers. For instance, 

initially for 956 proteins we found deviations from a normal distribution produced by proteins 

with high and low values of the rate V(x)/MW(x), “advanced runners” (V(x)/MW(x) ≥ 20.7) 

and “stragglers” (V(x)/MW(x) ≤ 18.4). The “leader runner” in this sample of proteins was the 

mouse Elastin precursor (V(x)/MW(x) = 23.65.64 teds mol/kg) and the Histidine operon leader 

peptide was the “straggler” (V(x)/MW(x) = 17.4063 teds mol/kg). Proteins with intermediate 

values of the V(x)/MW(x) −a remaining of 915 proteins− have a remarkable normal 

distribution (see Table 2).  

This result suggests an amazing question: Are proteins still evolving? Evidently, a protein 

with a high rate not necessarily belongs to a higher living organism. In particular this is 



reflected in the isofunctional family of Cytochrome C. In a sample of 211 enzymes −from 

different living organisms− the “leader runner” is the Cytocrome C from Rhodopseudomonas 

acidophila with a rate of 21.3688 teds mol/kg while the rate of the Homo sapiens Cytochrome 

C is 19.9771. Actually, it seems to be that for every family of isofunctional proteins there is a 

variation range of rate values following normal distribution (Table 2). A significant example 

is found in the sample of 416 DNA mutant sequences of HIV-1 protease gene isolated from 

different patients around the world. By reason of the technical limitations every mutational 

variant isolated from a patient is likely the most successful mutant of the virus population in 

this person, defeating the resistance of immune system and drug therapies, i.e., technically it 

is only possible isolate the most abundant mutant in a blood sample from a patient. As we see 

in Table 2 the success in the mentioned battle it is reached in a small variation range of rate 

values.  These examples suggest that the living organisms at the molecular level look for a 

compromise between biological functionality, economic feasibility and the survival 

requirements, in such away that the DNA polymorphism observed in a given gene is the result 

of an optimization process.  

5. Conclusions 

Given that proteins are molecular devices where hardware and software function as one in 

such a way that the software information value is proportional to the hardware energy cost, 

we found theoretical and experimental proof that proteins −from all living organisms− tend to 

have their estimated semantic content of information proportional to their molecular weight.  

The semantic content of protein message is estimated on a new point of view of the genetic 

information system as a Boolean information system. Here, like Shannon we regarded the 

generation of a message to be a Markov process. As a result, in the message carried by 

proteins -for minimum energy waste- the rate of information content per unit mass tends to be 



statistically constant and close to 2.35628690364 × 1025 bits/kg. The law expresses the 

solution to a continuous optimization process that living organisms had to face, in which there 

is a compromise between biological functionality, economic feasibility and the survival 

requirements. 
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