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Abstract

The thermodynamics of the small SH3 protein domain is studied by means of a simplified model

where each bead–like amino acid interacts with the others through a contact potential controlled

by a 20×20 random matrix. Good folding sequences, characterized by a low native energy, display

three main thermodynamical phases, namely a coil–like phase, an unfolded globule and a folded

phase (plus other two phases, namely frozen and random coil, populated only at extremes temper-

atures). Interestingly, the unfolded globule has some regions already structured. Poorly designed

sequences, on the other hand, display a wide transition from the random coil to a frozen state.

The comparison with the analytic theory of heteropolymers is discussed.
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I. INTRODUCTION

Since Anfinsen first stated the thermodynamic hypothesis [1] (that is, in a given environ-

ment, structural and functional features of proteins are fully encoded in their amino acids

sequence) a consistent effort has been set in the study of the relationship between the amino

acid sequence and its native structure and function. A significant part of this effort has been

dedicated to the so called inverse folding problem, that is to the design of sequences which

have a desired structure as unique, stable, kinetically accessible ground state (GS). The

simplest approach to this problem is to search for the sequence which minimizes the energy

of the system, keeping the native conformation and the ratio between the different kinds of

amino acids (composition) fixed [2]. At the basis of this approach lies the assumption that

the free energy of most states of the system obey the principle of self-averaging, so that

the total probability of the competing states is unaffected by the design. The property of

self-averaging is also an element of the replica method, which complements the description

given by the random energy model (REM) for heteropolymers [3].

A more efficient approach, which has given good results on lattice models, is to optimize

either the Z-score [4] or the approximated free energy of the system [5, 6]. However, at-

tempts to apply this idea to continuum hydrophobic-polar models has lead to results less

satisfactory than expected [7]. Nevertheless, the energy-minimization approach has still the

advantage of being simple to implement (especially in continuum space, where the wideness

of the conformational space makes the calculation of the free energy non trivial) and it has

proven successful in finding sequences which fold on the crystallographic structure of the

SH3 domain within a dRMSD of 2.6Å [8]. There, as in other works [9], a major problem in

achieving this goal has been the poor knowledge of the interaction among amino acids. A

possible strategy to circumvent this limitation is based on the assumption that the ability

of proteins to display a low-entropy equlibrium state at biological temperatures is a con-

sequence of the heterogeneity of the interactions, together with the polymeric geometry of

the system [10]. Consequently, the inverse folding approach should work for any quenched

random interaction, provided it is sufficiently heterogenous [3] (and thus different from the

simple hydrophobic-polar models).

In the present work, we have focused our attention on SH3, a small (60 residues) β-like

protein domain (cf Fig. 1, left panel) which has been widely investigated both experimen-
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tally [11, 12, 13] and computationally [14, 15, 16]. Our model has proven successful in

discriminating between good and bad folding sequences on the basis of only their native

state energy. In particular, it has been possible to identify a threshold energy Ec
targ, such

that sequences with native energy Etarg < Ec
targ are good folders, while sequences with

Etarg > Ec
targ do not fold to the SH3 native structure and display low–energy conformations

very diffent among themselves.

Good folding sequences display a rather sharp transition between a globular unfolded state

and the unique native conformation, as experimentally observed [17]. Microcalorimetric

experiments can explore temperatures which typically range from 0o to 90oC. Experimental

measures of the specific heat for four sequences folding to the SH3 domain are shown in

the right panel of Fig. 1. All these proteins display a single peak in the specific heat at

temperatures ranging from ≃ 50o to ≃ 70oC. The thermodynamics of bad folders is more

difficult to study due to their tendency to clump into insoluble aggregates.

In the present work we employ efficient sampling algorithms [18] to study the thermody-

namics of good and bad sequences designed on the SH3 fold and compare them to random

sequences. The main issues we want to investigate are the nature of the equilibrium states

that the protein populates, as well as the thermodynamics and structural properties of these

states. Furthermore, we study the extent to which these properties can be described by the

standard theory of heteropolymers [19, 20].

II. THE MODEL

The model we use has been described in ref. [8]. It is a reduced off-lattice single-bead

model where the amino acids are represented by spherical beads centered around the Cα-

atom connected by an inextensible chain. The energy potential is the sum of pair interactions

via a square well function where each σ-th amino acid type is characterized by a specific

value of the hard core radius RHC(σ) and of the interaction strenghts B(σ, π). The matrix

B(ρ, π) is generated according to a Gaussian distribuition (the mean is B0 = 0.23 and the

standard deviation is σB = 0.53, in arbitrary units) and sequences are designed making use

of a Monte Carlo simulation at various temperatures in the space of sequences. That is,

switching two amino acids at random and then accepting or rejecting the change according

to the Metropolis algorithm [21].
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Another important ingredient of the model is a constrain on the total number of contacts

each residue is allowed to build. This constrain has been introduced because single-bead

models oversimplify the geometry of the residues and thus give rise to unphysical conforma-

tions where residues build more contacts than their real geometry would allow. Therefore a

maximum number of contacts nmax(σ) has been assigned to the 20 amino acids. The ther-

modynamic sampling has been performed making use of a generalized weights algorithm

[18].

The order parameters analyzed are the Radius of Gyration (Rg), the RMSD (Root Mean

Square Deviation) and the dRMSD [35] (distance root mean square deviation), which per-

forms well in discriminating different states of the system. In all our simulations RMSD

and dRMSD resulted to be highly correlated. Consequently we will only refer to dRMSD.

When dRMSD is used to calculate geometrical differences between a given structure and

the native src-SH3 we will use the simbol dN . When used to calculate differences between

any couple of structures, it will be called dS.

For six particular secondary structures of src-SH3 (that is the RT-loop (residues 8–19, cf.

Fig. 1), the Diverging turn (Dv, residues 20–27), the n-src loop (residues 28–37), the Distal

hairpin (Dt, residues 38–50), the helix 310 (residues 51–54) and the sheet β1−5 (residues

1–7/55–57) ) as well as for their relative conformations, we define a “structure content” q as

the average fraction of native contacts within each structure.

In what follows, we study the thermodynamic behaviour of 9 different sequences summa-

rized in Table I and generated according to the Etarg criteria.

III. THERMODYNAMICS OF GOOD FOLDERS

Sequences s1, s2 and s3 (cf. Table I) display protein–like properties [8], having a unique

and stable native state corresponding to the SH3 conformation shown in Fig. 1 and being

able to reach it in a short time. The conformational specific heat Cp(T ) of these sequences,

calculated with the present model, is displayed in Fig. 2. An interesting feature is that the

three sequences, although having less than 10% identity, display very similar specific heat.

Cp is in all cases characterized by four peaks, which mark the transition between different

states. Because of these similarities, in the following we refer to the behaviour of sequence

s1, as a template for all good folders, unless otherwise mentioned. To identify the features of
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the thermodynamical states of this sequence, we have plotted in Fig. 3 the averages of dN ,

Rg and of the energy E as functions of temperature. At high temperatures (T > 0.6, the

corresponding thermodynamical state being marked as (V) ) the chain behaves as a random

coil with an average energy only slightly below zero. In this state the protein has very few

(< 5) contacts, no detectable secondary structures, a mean gyration radius R̄g ≃ 22Å and

a dN between 18Å and 25Å. That is, it does not have anything in common with the native

conformation.

Decreasing the temperature, the system shows a low, wide, peak in Cp(T ). The state

lying beyond the peak (state (IV) in Fig. 3) is still extended, having a mean radius of

gyration of 18Å. The associated conformations are overall dissimilar from the native one,

with d̄N = 15 ± 4Å and d̄S = 9 ± 2Å. The equilibrium distribution of dS at T = 0.5 is

shown with a dashed curve in the upper panel of Fig. 5 and indicates a wide structural

heterogeneity. Nonetheless, state (IV) has a sizable content of structured Distal hairpin and

RT-loop (q between 0.25 and 0.56), while the n-src loop, the Diverging turn, the helix 310 and

the sheet β1−5 are essentially absent (cf. Table II). These conformations are characterized

mainly by local bonds, although there are few non-local native contacts of residues 2, 3 and

4 with residues 24, 25 and 26, which give rise to the RT-loop.

At a temperature T ≃ 0.34, the system undergoes a marked decrease in the energy and

a sharp compaction (R̄g decreases from 18Å to 12Å). The state beyond this coil–globule

transition (state (III) of Fig. 3) is associated with conformations displaying an average

dN = 6Å, still dissimilar from the native conformation, thus qualifying as unfolded state.

This transition is underlined by a rather sharp peak in Cp, consistently with a first order coil–

(ordered-)globule transition, as predicted by the theory of non-random heteropolymers [19].

The distribution of dS for state (III) (T ≃ 0.2) is shown in Fig. 5 (dotted curve). Although

the major peak is still centered at dS ≃ 8Å, indicating the structural heterogeneity typical

of the unfolded state, a small peak emerges at dS = 4Å, which indicates a small presence

of specific conformations. On the other hand in this region the specific heat is well above

zero, and the energy displays values in the range E ≃ −29 to E ≃ −39. Interestingly, this

energy interval is not accompanied by any major structural changes, as indicated by the

approximately constant values of RG and dN .

Analyzing the conformations and the map of contacts of state (III), we observe that it is

characterized by the RT–loop and the Dt essentially fully formed (with probability 0.83 and
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1.0, respectively), and, consequently, the sheet between strands β3 (36–41) and β4 (47–51).

Also the Diverging turnDv is well structured at this stage (q = 0.75), while the two terminals

get together and give rise to a shorter sheet (which is generally not fully formed at this point;

q = 0.55) between strands β1 and β5. The poor presence of n-src loop (q = 0.40) causes the

sheet β2 (24–28) - β3 not to be formed. Within this context one can see from Table III as

well as Fig. 4 that the contacts between Dt and Dv are not formed. On the other hand,

one finds that the contacts between the RT–loop and the distal hairpin are formed with

high probability (0.86), contacts which were not formed in IV. Summing up, the presence

of the ensemble described above, dominated by unfolded globular conformations displaying

structured fragments is a thermodynamic hallmark of good folders.

Going back to Fig. 3, a third peak is found at temperature T = 0.10 and marks a

transition to a state with average dN = 3.0Å and RMSD= 4.6±0.8Å, which can be regarded

as the native state (cf. ref.[8]). This transition gives rise to the formation of the n-src loop,

which is associated with a large entropy loss. Moreover, at this temperature the system

undergoes the formation of the helix (with 75% probability and an increase in the content of

sheet β1−5 (q = 0.85, cf. Table II) which, nontheless, is still able to fluctuate. The average

radius of gyration of state (II) is R̄g = 10Å, which is the same as that of the crystallographic

native conformation and is only 20% more compact than state (III). The distribution of dS

is now peaked around 2.5Å (cf. Fig. 5), in accordance with the features of uniqueness of the

native state. These data suggest that the peak at T = 0.10 is the one observed in calorimetry

experiments (see Fig. 1), associated with the folding transition (in Fig. 3 the hypothetical

experimental window is indicated with a gray frame, assuming the Tfold of SH3 to be 333K

[36]). Note that the other peaks of Fig. 2 correspond to much larger temperatures, and

consequently can hardly be observed under normal experimental conditions.

At temperature T = 0.06 the specific heat of sequence s1 has a last, small peak and then

sharply drops to zero, in correspondence with the freezing of the system into its ground

state. The contact map of state (I) indicates that the only essential structural difference

from the previous state is a tightened sheet β1−5 (q = 0.90), that freezes the last degrees of

freedom of the system (cf. Table II).
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IV. THERMODYNAMICS OF BAD AND RANDOM SEQUENCES

For comparison with the good folding sequences, we next analyze the specific heat of

three randomly–generated sequences (sequences s7, s8 and s9) and of three bad folders (s4,

s5 and s6), that is sequences designed to have, on the SH3 native conformation, an energy

too high to fold (i.e. larger than Ec [8]). The plots of the specific heat are displayed in Figs.

6 and 7, respectively.

In all these cases the pattern common to good folders is lost and the specific heat have

a more sequence–dependent shape. The shape of Cp for bad folders is characterized by a

large shoulder which involves all temperatures up to T = 0.6, with peaks superimposed in

a disordered fashion. On the other hand, random sequences display a more compact Cp,

being significantly different from zero only in the region between T = 0.05 and T = 0.40.

The peaks in the specific heat of bad and random sequences are tightly connected with the

variation of the radius of gyration of the protein. In Fig. 8 the average radius of gyration

R̄g for a folding sequence (s1, solid curve), for a bad sequence (s4, dashed curve) and for a

random sequence (s7, open circles) are shown.

A. Random sequences

The radius of gyration of the random sequence displays a wide sigmoidal shape which

spans the region of the major peak in the specific heat. Consequently, this wide peak is

associated with a broad transition from a coil (R̄g ≃ 20Å) to a compact globular phase

(R̄g ≃ 10Å). The range of temperatures which can be interpreted as biologically relevant

(cf. Fig. 3) partially overlaps the peak in Cp. According to Flory’s model of homopolymer

collapse [22, 23], the volumetric interaction free energy takes the form:

Fvol(T, φ) ≃ NT

(

1− χφ+
1− φ

φ
log(1− φ)

)

,

where φ = νN /V is the average polymer volume fraction, N the total number of monomers

in the chain, ν is the excluded volume of each monomer and V is the average volume

occupied by the chain, V ≃
(

5

3

)3/2
4π
3
R3

g [37]. From the maximally dense globule obtained

from simulations, Rg ≃ 9.8Å, we obtain ν ≃ 141 Å3 as the average excluded volume. The

Flory-Huggins constant, χ, can be estimated from the number of contacts in the dense

globule, NC , by noting that Nφ is the number of binary collisions in the mean-field picture,
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hence E = −NTχφ is the total interaction energy. In the high density limit (φ → 1), one has

E = −NCB
′, where B′ is the effective interaction energy between monomer pairs. Thus, χ ≃

−NC

N
B′

T
= −z

2

B′

T
, and z is the coordination number for the (dense) globule. In the case of a

homopolymer, B′ = B0, where B0 is simply the monomor-monomer interaction strength. In

the heteropolymeric case, the effective interaction is modified according to B′ = B0−σ2
B/2T

[19], where B0 now denotes the average of the interaction matrix, B0 =
∑

αβ pαpβBαβ , and

σ2
B =

∑

αβ pαpβ(Bαβ − B0)
2 is the variance. Here, the summation,

∑

αβ, runs over the

different monomer types, α and β, and pα is the frequency of occurence of monomor type

α. In our case, B0 = 0.23, σB = 0.53 and z ≃ 2.2. Combining the various expressions above

and expanding the total interaction free energy for a random heteropolymer to third order

in the density we obtain

Fvol(T, φ) = NT

[

−
z

2

(

σ2
B

2T 2
−

B0

T

)

φ+
1

2
φ+ 1/6φ2 +O(φ3)

]

,

with the corresponding second and third virial coefficients b(T ) = ν
2T

(

T − z
σ2
B

2T
+ zB0

)

and c = ν2/6, respectively. The theory predicts a second-order coil–globule transition at

temperature θ where b(θ) = 0. In the present case, θ ≃ 0.36, which is in the high end

of the transition region. However, according to the standard Lifshitz theory of the coil-

globule transition [20] there is an entropy cost associated with the surface formation of the

globule, because the chain sections on the surface layer necessarily have the form of loops.

Since this entropy cost scales with the system size as N 2/3, the transition temperature, Tcg,

may be shifted to a value somewhat below the thermodynamic θ-point for small systems.

By balancing the energy gain from the coil collapse with the entropy loss of the surface

formation the theory predicts the relative shift of the transition temperature, τcg ≡ Tcg−θ
θ

,

to be [20]

τcg ≃ −2.7a3/2c1/4b−1
θ N−1/2, (1)

where a is the Kuhn length and bθ is defined from the Taylor expansion of b(τ) around

the theta point, b(τ) = bθτ + O(τ 2) and τ = T−θ
θ
. For the present model, we obtain

bθ = ν
(

1

2
+

zσ2
B

4θ2

)

. To determine a, we assume for simplicity that the chain behaves as a

gaussian coil at the point where dRg

dT
has its maximum. From the relation R2

g =
1

6
alN , where

l ≃ 3.8Å is the distance between consecutive monomers, one obtains a ≃ 7.6Å, corresponding

to a moderately flexible chain, v/a3 ≃ 0.32. Inserting the expression for bθ and c in Eq. (1)
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gives

τcg ≃ −2.7 · 6−1/4

[

1

2
+

z

4

(

σB

θ

)2
]−1 (

a3

N ν

)1/2

≃ −0.23,

corresponding to Tcg ≃ 0.27, which is in excellent agreement with the observed midpoint of

the transition, cf. Fig. 6. The coil–globule transition happens, coherently with the theory

of random heteropolymers [19], at approximately the same temperature (T ≃ 0.25) for all

the random folders.

From the lack of any plateau in R̄g (see Fig. 8), we see that the system is not populating

any well-defined globular state in the transition from the coil to the frozen ground state.

In other words, differently from good folders, the freezing transition is not immediately

distinguishable from the coil–globule transition region.

Making use of the common picture of freezing [19] as the process which brings random

heteropolymers from the sea of random globular configurations into their ground state basin,

we calculate the thermodynamical average of dS as function of temperarature. The plot of

d̄S(T ) (cf. Fig. 9 (a)) shows indeed a marked transition for all the sequences from values

d̄S ≈ 1.5Å (corresponding to mutually similar structures) to d̄S ≈ 4.2Å (corresponding to

compact structures with no similarity). The average temperature of this freezing transition

is Tfreeze = 0.1 (cf. Fig. 9 (a)) and coincides with a sharp decrease of Cp(T ). In accordance

with REM [19], which predicts the freezing transition to be of second order, we may regard

this decrease of Cp as a signature of a second order phase transition in our finite system.

To investigate the roughness of the energy landscape, we calculate the value of dS between

low energy states, chosen within the 0.15-fractile of the energy distribution at T = Tfreeze

(i.e. PT (E < E15%) = 0.15, at T = Tfreeze). As Fig. 9 (b) shows, the set of these

low energy (E < −39) states for random sequences is very heterogenous (d̄S = 4.4Å, and

null probability for dS < 2.7Å). On the other hand, kinetic simulations below the calculated

freezing temperature (T < 0.1), initialized in any one of these low energy conformations, visit

states with a pairwise distance dS < 2.5Å (cf. Fig. 9 (c)). This shows that conformations

with dS > 2.7Å are typically separated by consistent energy barriers which make them

kinetically inaccessible to each other even at temperatures where the specific heat is well

above zero. This is fully consistent with the thermodynamics of random heteropolymers

[3], which predicts a free energy landscape at low temperature with several wells, each well

containing conformations mutually similar, and different wells containing conformations with
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little similarity. The low–temperature state of the random sequence is then, according to

the language of ref. [3], a frozen state.

The theory of heteropolymers predicts the freezing temperature of large globules to be

Tfreeze = σB

2
√
∆s

[3], where ∆s is the entropy per contact lost in the freezing. Using as

an estimate ∆s ≃ log(a3/ν) ≃ 1.14 [19], one obtains T theor
freeze ≃ 0.25, which is significantly

higher than the value estimated from the simulations. Interestingly, the crude approximation

∆s ≃ log(a3/ν) is surprisingly close to the observed value ∆s = 1.01 [38].

Importantly, the observed Tfreeze is also low compared with the critical design temper-

ature of our model (T cr
design ≃ 0.15), in marked contradiction with the prediction of REM,

where T cr
design = Tfreeze. The failure of the equations Tfreeze = σB

2
√
∆s

and T cr
design = Tfreeze

shows that, in our system, low energy states are not uncorrelated, implying that the principle

of self-averaging does not in general apply.

From the structural point of view, random sequence display surprising features. In Table

IV the features of the random sequences are reported for their three thermodynamically rel-

evant states. As far as the formation of secondary structures is concerned, random sequences

are obviously less effective than good folders. In particular, the helix and the sheet β1−5

are practically absent at all temperatures in random folders. Nonetheless, in most of them,

the presence of the other peculiar structures (i.e. the RT-loop, the Diverging turn, the n-src

loop and the Distal hairpin) is non-neglegible in low energy states. This highlights the fact

that these structures, primarely based on local and mid-range bonds, pay a lower entropy

and hence require less design accuracy to be formed. In other words, there is a structural

imprint based only on the length of the chain which favours turns in specific places, and the

evolutionary optimization of good sequences can take advantage of such imprint to imcrease

its stability.

B. Bad sequences

While the rationale for the specific heat of good folders resides in their common folding

properties and that for the random sequences in their average properties, bad folders seem

to have lost both of them. Their specific heat is featured neither by the specificity of their

sequence, nor by the averaging of the contribution of uncorrelated residues. Even the coil–

globule transition is overwhelmed by other effects, and is not easily detectable in the plot of
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Cp (cf. Fig. 7).

The R̄g(T ) plots of these sequences show a rather smooth decrease (as temperature de-

creases) from random coil values above 20Å to a ground state value ≃ 10.5Å (see Fig. 8

where the R̄g(T ) plot of sequence s5 is shown). This implies that, similar to random se-

quences, bad folders do not have the globular unfolded state (III) typical of good sequences.

A qualitatively similar behaviour is also found for dN plots (data not shown).

Unlike random sequences, their low energy states do not populate a multitude of minima.

In fact, thermodynamical samplings of the kind used for good and random sequences, start-

ing from a random conformation and lasting for 50×109 steps, find a non-native (dN = 5.0Å)

but still structurally homogeneous (dS = 3.1Å) basin, the bottom of which displays an en-

ergy E ≃ −44. Nonetheless, fixed temperature Monte Carlo simulations at T = 0.1 starting

from the crystallographic conformation of SH3, display another homogenous (d̄S = 2.4Å and

maximum of dS = 4.1Å) basin with practically the same energy (Emin = −44.5) but strongly

dissimilar from the first one (crossed d̄S = 4.7Å with minimum value of dS = 3.6Å). The

native conformation belongs to this second basin (whose d̄N = 3.2Å), i.e. the native basin is

a local minimum of the free energy, at least for temperatures up to 0.1 (where the Cp is still

consistently above zero). But while performing the simulation at T = 0.3 the system leaves

the native state almost immediately, reaches states belonging to the non-native low-energy

state and is never able to return to the native basin within the 5 × 109 steps of the MC

sampling.

Our generalized-weight sampling algorithm does not implement an order parameter ca-

pable of differentiating between the two basins (which span the same range of energies) and

thus is not able to provide their respective free energies. On the other hand the above results

show that, at not–too–low temperatures, there is not a large barrier separating the native

from the non-native basin, hence the entropy of the non-native state must be markedly

larger than that of the native, while their energies are similar.

Unlike good folders (which compensate the low entropy of the native state by optimizing

the sequence in such a way that E(Native basin) < E(Random globule) ), the picture which

emerges here is that the native state of bad folders is still entropically disfavoured, but does

not have an energetic advantage (E(Native basin) ≃ E(Random globule) ) to counterbalance

the entropy of competing states.

The alternative ground state of bad folders does not satisfy the conditions of kinetical
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accessibility and thermodynamical stability required to a protein’s native state. In fact,

kinetic simulations at fixed temperatures ranging between T = 0.1 and T = 0.2, reach this

state only about four out of ten times, while the other six times get trapped into local

energy minima (rough energy landscape). Furthermore, the plot of dRMSDGS(T ) (Fig. 10)

shows that this ground state is not even thermodynamically stable. Indeed dRMSDGS has

a smooth increase with the temperature, i.e. there is no energetic barrier segregating the

ground state from other higher energy states.

Of course, these results are not able to exclude the existence of other basins, although

they have not been observed in very long simulations for each of the three bad sequences.

Table V summarizes the features of the bad folders in the three themodynamically relevant

states. The analysis of secondary structures formation confirms what stated when random

and good sequences have been compared. Indeed the RT-loop, the Distal loop and, to a less

extent, the n-src loop and the Diverging turn have a non-neglegible presence in both the

frozen and the globular state of all bad sequences. On the other hand the helix and the sheet

β1−5 have a comparatively low presence in all sequences at any temperature. Remarkably,

the values of q in low energy states of bad folders reflect the hierarchy of the same structures

in good folders (cf. Table II). Namely, the RT-loop and the Distal loop, with an average value

of q at the frozen state of bad folders of respectively 0.59 and 0.70, are the first structures

to be formed in good folders (e.g. qgood is 0.34 and 0.44 at state (IV) for them), while the

n-src loop and the Diverging turn (with qfrozenbad respectively 0.25 and 0.20), the helix and

the sheet β1−5 are formed at lower temperatures in good folders.

V. DISCUSSION

The thermodynamics of the SH3 domain has been widely studied by means of Gō models

[24], where only native contacts interact favourably. Conformational samplings of a Cα model

where each native contact contribute to the total energy with the same energy B0 = −1

show a plot of the specific heat with a single, sharp peak at 0.63 · |B0| [25]. A modified Gō

model where each pair of residues building a native contact interacts with a pair–dependent

energy (the average being B0 = −0.29 and the standard deviation σB = 0.37) displays

again essentially a single peak in Cp centered at 0.85|B0| (cf. ref. [26]). The shape of the

specific heat in the present model, where also non-native contacts are considered, is different
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and much more structured. First, there are a number of peaks which indicate that the Gō

interaction oversimplifies the thermodynamics of the chain. Although most of these peaks lie

at non-biological temperature, this discrepancy makes one suspect that also other features

of the thermodynamical states of the model protein can be oversimplified.

An interesting feature of the present model is that the biologically relevant unfolded state

of the protein (state (III) of Fig. 3, see also Fig. 4 and Tables II and III) is quite different

from a random coil. First, it is rather compact, the average radius of gyration being 12Å,

some 20% larger than the native state. Note that the unfolded state predicted by our model

is more compact and much more structured that that given by standard Gō models, which

have a R̄g ≃ 25Å and a total number of contacts which is approximately one fourth of that

in the native state [25]. Second, a number of native and non-native contacts are rather

stable in the unfolded state. In particular, the RT loop, the distal loop and the diverging

turn result consistently populated.

These results are in agreement with the NMR experiments of α–spectrin SH3 under

acidic conditions, which populate a denatured state [27]. This state displays NOE (Nuclear

Overhauser Effect) signals in the region of the distal hairpin and of the preceding strand.

Moreover, NMR studies of the drkN SH3 domain, an unstable protein which populate the

unfolded state under non-denaturing conditions, indicate an even larger abundance of inter-

actions [28] than the α–spectrin experiments, involving the whole regions 9–20 and 25–48.

The associated radius of gyration results of the order of 11Å. The radius of gyration re-

sulting by the implementation of the NOEs is ≃ 11Å, in agreement with the results of our

model. Moreover, the 75 % of the long range NOEs observed is non-native, a fact which

highlights the necessity of accounting for non-native interactions in any model which aims

at describing the unfolded state of a protein.

The complicated shape of the specific heat of good folders reveals a hierarchy of energy

scales which can be useful to understand the folding of SH3. Some regions of the protein,

such as the distal hairpin and the RT–loop, are structured even at very high temperature

(q = 0.25 for both structures at T ≈ 0.5 (IV), cf. Table II and Figs. 3 and 4), indicating a

remarkable propensity to fold independently on the rest of the protein. Using the language

of [29], we can see these regions as foldons.

Following ref. [30], one can interpret these sequence of energy scales from a kinetic point

of view, identifying high–temperature states as high–energy conformations at the beginning
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of the folding dynamics, and low–temperature states as the ending point of the dynamics.

From this point of view, the regions of high–temperature conformations displaying native

interactions can be regarded as the local elementary structures (LES) [31] which drive the

folding kinetics. Note that this interpretation assign to non-native interactions an important

role in the folding kinetics, as testified by the fact that their elimination in Gō models affects

the whole hierarchy of energy scales. Within the framework of the hierarchical folding

mechanism, the RT–loop and the distal hairpin act as (closed) LES in the language of ref.

[32]. Their docking, taking place at the transition between III and II gives rise to the (post–

critical) folding nucleus (FN), that is the minimum set of native contacts which brings the

system over the highest barrier of free energy associated with the folding process.

Our results also show, complementing the findings of our previous work [8], that sequences

obtained by minimization of the interaction energy at fixed native conformation not only

fold fast but they also display realistic thermodynamical features.

Bad sequences, although not being able to fold, display a consistent degree of structure

in the same regions of the protein which in good sequences are ordered already at high

temperature. This is consistent with the results obtained by means of lattice models [31],

where it is seen that contacts within and across local elementary structures are stabilized

even in sequences obtained at low evolutionary pressure. In other words, such bad sequences

have some of the kinetic features typical of good folders, but their energy is not low enough,

so that they have to compete with a sea of alternative conformations.

When comparing our results with the random energy model (REM), we find some inter-

esting differences. First of all our model shows a clear folding transition from a non-random

globular state, which the REM assumes to require higher level of sidechain detail [19]. On

the other hand we do not see any transition from a random globule to a folded globule for

any sequence; sequences either achieve a specific globular configuration, from which they al-

ways fold into the native structure, or get trapped into a random globular state. Moreover,

the coil–globule transition of our good folders corresponds to a peak in the specific heat,

as expected in the case of first order transitions, in agreement with the non-random het-

eropolymer theory. Our system contradicts also the prediction of the freezing temperature

made by REM (T theor
freeze results to be much higher than the actual Tfreeze) and the theo-

retical equivalence T cr
design = Tfreeze, thus questioning the applicability of the self-averaging

principle.
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Our simulations provides information on the relationship between design temperature

(Tdesign) and the thermodynamical behaviour of the corresponding sequences in our system.

The outcome is summarized in Fig. 11 [39]. At high temperatures, sequences designed at

any temperature adopt an highly disordered coil configuration. Decreasing the temperature,

the behaviour becomes sequence–dependent. Good sequences first undergo a coil–globule

transition to a partially ordered unfolded globule, and from there to the native state, while

poorly designed sequences undergo a smooth transition to a frozen set of more or less dis-

ordered compact states (Rg of the ground state is ≃ 10Å for all the nine sequences). The

freezing/folding temperature remains roughly constant all over the range of Tdesign, while

the compaction begins at lower temperatures for higher Tdesign, in such a way that the coil

– globule and the globule – frozen transitions “merge” into a wide coil – frozen-globule

transition region.

This phase diagram can be compared with that arising from the theory of random het-

eropolymers (see Fig. 1 of ref. [19]). In overall agreement with these results, we also observe

a random coil, a folded and a frozen phase. Furthermore, we also have found that the

boundary between folded and glassy phases is a vertical line in the phase diagram and the

freezing temperature essentially independent on Tdesign.

On the other hand, our phase diagram also shows important differences with the phase di-

agram describing the behaviour of random heteropolymers. Designed sequences (low Tdesign)

display an unfolded globular phase showing most of the properties of the unfolded state mea-

sured in experiments. Furthermore,the results shown in Fig. 11 display wide fluctuations

between the states, the transition regions occupying most of the phase diagram. This fea-

ture, which is absent in the theoretical diagram calculated in the thermodynamic limit,

highlights the important fact that proteins are finite, small systems, and that one should be

careful in applying the tools of heteropolymer theory to real proteins.

VI. CONCLUSIONS

We have used the SH3 domain as a benchmark to test the thermodynamical features of

a protein model in which the energy function is non-trivial. Unlike Gō models, this energy

function does not contain directly any information on the conformational ground state of

the protein, but only through the low (minimized) energy of the sequence in the native
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conformation. Furthermore, it allows for non-native interactions. The result is a richer set

of states than those predicted by Gō models. In particular, the unfolded state of selected

sequences is not completely disordered, but is a globule where some of the native contacts are

already stabilized.This fact has important implications in the folding kinetics of the protein.

The overall picture provided by standard theory of random heteropolymers is verified by our

simulations but, again, the model displays richer features, where new phases are found and

where the transition regions play an important role as a consequence of finite–size effects.
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FIG. 1: (Left) The native structure in a Cα representation of SRC SH3 as obtained by crys-

tallographic experiments (pdb code 1FMK). On the picture is explicitely indicated the RT-loop

(residues 8–19), the Diverging turn (Dv , residues 20–27), the n-src loop (residues 28–37), the Distal

hairpin (Dt, residues 38–50), the helix 310 (residues 51–54) and the sheet β1−5 (residues 1–7/55–

57). (Right) the specific heat of four different SH3-domain proteins, obtained from experiments,

are shown (solid curve is Btk [33], dashed curve is α–spectrin [11], dotted curve is Abl, dash–dotted

is Fyn [34]).
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FIG. 2: The specific heat Cp(T ) of the three good folders for sequence s1 (top), sequence s2 (bottom

left) and sequence s3 (bottom right)
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FIG. 3: The specific heat Cp(T ) (upper panel), average dN expressed in Å (middle panel, solid

curve), average radius of gyration < Rg > (middle panel, dashed curve) and average energy < E >

(lower panel) for sequence s1. The interval of temperatures defined by gray perpendicular lines

marks the region of biological relevance. The four pictures on the top show typical conformation of

the system in each state (the first picture represents both state (I) and state (II), as conformational

differences are neglegible on this scale).

21



I II III IV V
state

0

0.2

0.4

0.6

0.8

1

q

RT
D

v
n-src
D

t
3

10

β1-5
RT-D

v
 and D

v
-D

t
RT-D

t

FIG. 4: The structure content q of the motifs of SH3 and between some of them (see Tables II and

III of sequence s1 in the different thermodynamical states.

22



0 2 4 6 8 10 12 14
dS

0

0.2

0.4

0.6

0.8

1

P
(d

S
)
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T = 0.10 (solid curve), T = 0.20 (dotted curve) and T = 0.50 (dashed curve).
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FIG. 6: The specific heat Cp(T ) of the three random folders; sequence s7 (top), sequence s8 (bottom

right) and sequence s9 (bottom left).

24



0 0.1 0.2 0.3 0.4 0.5 0.6
Temperature

0

50

100

150

S
pe

ci
fic

 h
ea

t  
(s

4)

0 0.1 0.2 0.3 0.4 0.5 0.6
Temperature

0

50

100

150

S
pe

ci
fic

 h
ea

t  
(s

6)

0 0.1 0.2 0.3 0.4 0.5 0.6
Temperature

0

50

100

150

S
pe

ci
fic

 h
ea

t  
(s

5)

FIG. 7: The specific heat Cp(T ) of the three bad folders; sequence s4 (top), sequence s5 (bottom

right) and sequence s6 (bottom left).
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s7. (c): Distribution of dS for states sampled in a low temperature (T = 0.07) kinetic simulation

starting from one of these low energy states of sequence s7.
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dashed curve).
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FIG. 11: Phase diagram of the system. The behaviour in the conformational space as function of

the design temperature is shown, where the two most relevant transitions are taken into account.

The squares identify the centroids of the transitions (top of the Cp peaks for the good folders),

while the vertical lines span all over the transition regions for the 9 sequences studied. The shaded

area marks the expected transition region at any value of the design temperature.
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label Etarg Egs N—-β1—RT-loop——Dv—-β2—–n-src—–β3—–Dt—–β4—–310—-β5—C

s1 -37.80 -46.96 GLLLLAANNWWVTRTDEEKKDYVSSSSDDTQTGGYNIEGLIFFRQVVPPEAHTYYSSSTT

s2 -35.53 -45.03 QQHAASSSDDSDVFTVPPLGNLTNYYGIITKTTWLLFEGGAYTRNVDEEESSTLSVKYRW

s3 -34.85 -44.92 GDSAAAHQPERWWTTSSSEEPIYEVLLNVTTTFTRDVDSSDKVGFNGLLLQGTIYYNSKY

s4 -34.30 -44.52 QWAAHEEEDYRNFGTSSSYQGPGINSSFKTGYTTVDSDSLATRVVVDLLLILWEPKNYTT

s5 -33.65 -45.02 SGLNLEEPGKKYFRRTAAWFVEGSDSSVGTTTTNQHQTALLLWVSDDYYYIIVEPDSSTN

s6 -23.67 -42.28 DSSSSEERDIFYTTTWYYQQGPLNSLLLGTVKTVDDIYSSAKTRWVGAAHGPTEEFNLVN

s7 -4.52 -42.36 NLILYEKLDNRFNKWWFLADSSPASGQVDRTTSTVSSTQEHTTYEEYVSGLGTIPDAVGY

s8 +5.36 -38.72 LWYSSLEGGRVNLDTSSKVTPILSFAQGTDRVDDQEYTGIYWTVTEHTAEKYFNPNSALS

s9 +8.26 -40.92 EYLSVIKTEDPKQSEYPSWLSEFFLLTIATGNTLYYDGVHAVTSSRNSGGDAVRNDTTWQ

TABLE I: Sequences with selected energies Etarg on the SH3 target conformation displayed in Fig.

1. Egs is the energy of the ground state of the sequence. Sequences (s1, s2, s3), (s4, s5, s6) and

(s7, s8, s9) are good, bad and randomly generated folders, respectively.
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label Ē d̄N R̄g q(RT ) q(Dv) q(n-src) q(Dt) q(310) q(β1−5)

State V: “coil”

s1 -2 21.0 22.5 0.08 0.00 0.05 0.04 0.04 0.00

s2 -2 20.9 22.4 0.05 0.03 0.05 0.03 0.02 0.00

s3 -2 21.3 22.7 0.05 0.03 0.03 0.05 0.00 0.00

State IV: “embryo”

s1 -10 14.8 18.2 0.25 0.00 0.20 0.25 0.06 0.00

s2 -13 14.4 17.6 0.45 0.00 0.00 0.50 0.15 0.00

s3 -14 13.0 16.9 0.33 0.17 0.22 0.56 0.00 0.00

State III: “globule”

s1 -37 5.7 12.0 0.83 0.75 0.40 1.00 0.12 0.55

s2 -35 5.9 12.0 0.85 0.66 0.20 1.00 0.15 0.50

s3 -32 6.2 12.2 0.80 0.70 0.13 0.93 0.42 0.40

State II: “folded”

s1 -45 3.0 10.2 0.92 1.00 1.00 1.00 0.75 0.85

s2 -42 3.6 10.2 0.85 0.90 0.70 1.00 0.45 0.78

s3 -41 3.9 10.3 0.95 1.00 0.85 1.00 0.50 0.70

State I: “frozen”

s1 -47 3.0 10.2 0.95 1.00 1.00 1.00 0.75 0.90

s2 -45 3.6 10.0 0.95 0.92 0.88 1.00 0.66 0.88

s3 -45 4.0 10.1 1.00 1.00 0.85 1.00 0.45 0.70

TABLE II: The average energies and structural features are here summarized for the three good

folders at the five thermodynamically relevant states. From left to right, columns show the average

value of the energy, of the dRMSD from the native state (dN ), of the radius of gyration (Rg) and

the structure content q of six secondary structures of SH3 (that is, the RT-loop (RT ), the Distal

hairpin (Dt), the Diverging turn (Dv), the n-src loop (n-src), the helix 310 and the sheet β1−5).
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β1−5 RT Dv n-src Dt 310

Frozen state (I)

β1−5 - 0.86 1 - -

RT 1 - 1 -

Dv 1 1 -

n-src 1 1

Dt -

Native state (II)

β1−5 - 0.79 0.5 - -

RT 1 - 1 -

Dv 0 1 -

n-src 1 1

Dt -

Unfolded globule state (III)

β1−5 - 0.71 0.5 - -

RT 0 - 0.86 -

Dv 0 0 -

n-src 1 1

Dt -

Embryo globule state (IV)

β1−5 - 0.56 0 - -

RT 0 - 0 -

Dv 0 0 -

n-src 0 0

Dt -

TABLE III: The structure content q associated with contacts between SH3–structures of sequence

s1 are reported for the different thermodynamical states.
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label Ē d̄N R̄g q(RT ) q(Dv) q(n-src) q(Dt) q(310) q(β1−5)

“Coil” state

s7 -2 21.2 22.3 0.05 0.02 0.00 0.00 0.06 0.00

s8 -1 21.9 22.6 0.02 0.00 0.07 0.00 0.00 0.00

s9 -2 21.5 22.6 0.03 0.08 0.02 0.03 0.02 0.00

“Globule” state

s7 -37 5.6 10.5 0.32 0.15 0.45 0.38 0.15 0.11

s8 -35 6.3 10.0 0.15 0.22 0.12 0.20 0.10 0.06

s9 -34 6.0 9.6 0.40 0.27 0.53 0.07 0.08 0.05

“Frozen” state

s7 -42 5.4 10.3 0.14 0.22 0.20 0.45 0.08 0.14

s8 -39 5.9 9.8 0.22 0.25 0.05 0.30 0.03 0.05

s9 -41 5.9 9.3 0.44 0.38 0.72 0.03 0.12 0.08

TABLE IV: The average energies and structural features are displayed for the three random se-

quences at the three thermodynamically relevant states. From left to right, the different columns

show the average value of the energy, of the dRMSD from the native state (dN ), of the radius of

gyration (Rg) and the structural content q of six secondary structures of SH3 (namely, the RT-loop

(RT ), the Distal hairpin (Dt), the Diverging turn (Dv), the n-src loop (n-src), the helix 310 and

the sheet β1−5).
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label Ē d̄N R̄g q(RT ) q(Dv) q(n-src) q(Dt) q(310) q(β1−5)

“Coil” state

s4 -2 20.9 22.3 0.10 0.05 0.00 0.12 0.00 0.00

s5 -1 21.3 22.6 0.07 0.05 0.05 0.15 0.00 0.00

s6 -1 21.3 22.6 0.08 0.03 0.03 0.10 0.00 0.00

“Globule” state

s4 -36 4.2 10.9 0.70 0.55 0.45 0.77 0.00 0.04

s5 -37 5.4 11.2 0.75 0.35 0.10 0.82 0.08 0.07

s6 -33 6.2 10.7 0.45 0.14 0.33 0.56 0.12 0.10

“Frozen” state

s4 -45 4.5 10.3 0.67 0.25 0.20 0.80 0.07 0.04

s5 -45 5.2 10.6 0.70 0.30 0.10 0.80 0.12 0.15

s6 -42 6.0 10.6 0.40 0.20 0.30 0.50 0.15 0.18

TABLE V: The average energies and structural features are here summarized for the three bad

folders at the three thermodynamically relevant states. From left to right, columns show the

average value of the energy, of the dRMSD from the native state (dN ), of the radius of gyration

(Rg) and the structural content q of six secondary structures of SH3 (namely, the RT-loop (RT ),

the Distal loop (Dt), the Diverging turn (Dv), the n-src loop (n-src), the helix 310 and the sheet

β1−5).
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