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Abstract

Path integration enables desert arthropods to find back to their

nest on the shortest track from any position. To perform path in-

tegration successfully, speeds and turning angles along the preceding

outbound path have to be measured continuously and combined to

determine an internal global vector leading back home at any time. A

number of experiments have given an idea how arthropods might use

allothetic or idiothetic signals to perceive their orientation and moving

speed. We systematically review the four possible model descriptions

of mathematically precise path integration, whereby we favour and

elaborate the hitherto not used variant of egocentric cartesian coordi-

nates. Its simple and intuitive structure is demonstrated in compari-

son to the other models. Measuring two speeds, the forward moving

speed and the angular turning rate, and implementing them into a

linear system of differential equations provides the necessary informa-

tion during outbound route, reorientation process and return path. In

addition, we propose several possible types of systematic errors that

can cause deviations from the correct homeward course. Deviations

have been observed for several species of desert arthropods in different

experiments, but their origin is still under debate. Using our egocen-

tric path integration model we propose simple error indices depending

on path geometry that will allow future experiments to rule out or

corroborate certain error types.

Key words: Path integration, desert arthropod, egocentric, cartesian

coordinates
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1 Introduction

1.1 Path integration

Desert arthropods display the ability to return from a foraging excursion
back to the nest on a straight way, often called the home vector. This abil-
ity to make a bee-line to the nest (or another location, such as a feeding
site) without orientation on visible markers is based on an internal mech-
anism of path integration or dead reckoning, i.e. an integration of walking
speed and angular variation along the arthropod’s walking route. The re-
sult is a global vector that enables the arthropod to determine distance and
direction of its nest at any position and time. After detecting and loading
up the food, the arthropod just unreels that vector and, therefore, stays on
the right and shortest track to its nest. Charles Darwin was the first to
assume that animals may navigate this way (Darwin, 1873). About a cen-
tury later first detailed investigations concerning arthropods (Jander, 1957;
Görner, 1958, 1966; Wehner, 1968; Jander, 1970) were conducted. During
the last 30 years, the general interest has focused more and more on the re-
turn path to the nest after foraging, and many investigations on both arthro-
pods (e.g. Wehner and Wehner, 1986; Müller and Wehner, 1988; Bisch, 1999;
Collett et al., 1999) and mammals (e.g. Mittelstaedt and Mittelstaedt, 1980;
Séguinot et al., 1993; Benhamou, 1996, 1997; Séguinot et al., 1998) have been
performed.

Apart from path integration, it has been shown that many species are ca-
pable of using landmarks to get their bearings (Hoffmann, 1985a; Collett et al.,
1998; Bisch-Knaden and Wehner, 2003; Wehner, 2003). These landmarks, of-
ten referred to as local vectors, even seem to be preferred to the global vectors
(Wehner et al., 1996; Collett et al., 1998) as navigational tool. However, be-
fore these vectors can be applied successfully, some information about their
position has to be stored by the arthropod. Moreover, orientation with the
aid of local vectors is error-prone, since landmarks can disappear or change
their appearance, and, of course, is out of question for nests with no visible
landmarks nearby.

The global vector gets updated on the complete trip, even if the orienta-
tion is conducted by using landmarks (e.g. Wehner et al., 1996; Collett et al.,
1998, 2003). Moreover, it has been demonstrated that, after a sudden failure
of the stored landmarks, desert ants Cataglyphis fortis revert to their global
vector for orientation. Even if not used for several days, desert ants keep
the global vector stored in their memory (Ziegler and Wehner, 1997). Thus,
the relevance of global vectors as the main toolkit for homing seems to be as
clear as the evolutionary necessity to develop abilities to measure the angular
and linear components of the movements and to integrate them for having a
home vector available whensoever.

A number of models (Jander, 1957; Mittelstaedt and Mittelstaedt, 1973;
Müller and Wehner, 1988; Benhamou et al., 1990; Gallistel, 1990) try to point
out mechanisms of path integration (for reviews, see Benhamou and Séguinot,
1995; Maurer and Séguinot, 1995; Biegler, 2000). Whereas earlier models use
geocentric coordinates to represent the current global vector and the antici-
pated home direction, the more recent models are based upon the assumption
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that internal calculation of the global vector, pointing from the animal’s head
to an anticipated nest position, should be performed in an egocentric coor-
dinate system. In this case, however, mathematical computations and error
estimations have so far been carried out only in polar coordinates, describ-
ing the distance and direction towards the nest with respect to the animals
current position and walking direction.

Here we introduce a consistent model for egocentric path integration using
cartesian coordinates. The mathematical computation of current nest posi-
tion relative to the moving arthropod reduces to an inhomogeneous linear
differential equation system of two variables, namely forward moving speed
and angular turning rate. Different ways of their estimation and further pro-
cessing implemented into this model provide several possibilities to reproduce
some observed reorientation phenomena of arthropods.

The article is organised as follows. We finish the introductory Section re-
viewing more details on signal and information processing in homing arthro-
pods. The next Section 2 is devoted to previous models of path integration.
Section 3 presents our model approach and compares it to those in the previ-
ous Section. In Section 4 we turn to systematic errors in homing paths which
have been studied extensively and may give hints about internal information
processing. Taking advantage of the simple structure of our model we pro-
pose error tests for future experiments. Finally we discuss our results and
briefly comment on possible neural realizations of egocentric cartesian path
integration and possible generalisations including global vectors for feeding
sites.

1.2 Required information for path integration

Allothetic and idiothetic signals provide the arthropod with the information
required for path integration. During the following description of these sig-
nals, we shall focus on desert arthropods and here, in particular, on desert
ants Cataglyphis fortis and Cataglyphis bicolor, because more is known on
them as compared to other arthropods. Nevertheless, we shall also men-
tion similar investigations on other arthropods in order to firmly base the
modelling principles, mainly because neurobiological analyses have been per-
formed on larger and more easily accessible arthropods (Wehner, 2003).

1.2.1 Allothetic signals

Without doubt, the main allothetic signals to be considered are visual inputs.
Among them are landmarks which, however, have limited overall value as
described above. More reliable turn out to be optical sources indefinitely far
away: with regard to desert ants, spectral skylight gradient, sun position,
and the pattern of polarised skylight are the most important cues (Wehner,
1997a,b, 2001, 2003; Wehner and Srinivasan, 2003). These three can work
without help of each other, as was shown in experiments where one or even
two of them had been made inoperative (Müller and Wehner, 1988; Wehner,
1997a). In all three the ants continuously use the sky as a reference to
determine their body axis orientation.

Whenever the arthropod applies spectral cues, it makes use of the fact
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that light waves with their different wavelengths are not equally distributed
over the illuminated sky. This ability was shown by Wehner (1997a) for ants
and Rossell and Wehner (1984) for bees.

Direct orientation with respect to the azimuthal position of the sun (or
any other light source) has been found in ants and many other arthropods
(e.g. bees, von Frisch, 1950; or spiders, Görner, 1958).

The skylight polarisation pattern, also referred to as skylight compass,
represents the most effective and stable means for orientation in desert ants.
Desert ants are able to see the e–vector polarisation pattern that is produced
by scattering of the sunlight at air molecules in the atmosphere. This ability
has been found in other arthropods and vertebrates as well, first of all in
bees (von Frisch, 1949), but also, for instance, in desert locusts Schistocerca
gregaria (Eggers and Gewecke, 1993), desert isopods Hemilepistus reaumuri
(Hoffmann, 1984) or desert beetles Parastizopus armaticeps (Bisch, 1999).
A small visible section of the sky has been shown to be sufficient to detect
rotations (Fent, 1986; Wehner, 1994, 1997b).

Each rotation of the ant’s body axis results in a corresponding change
of this orientational angle allowing the ant to measure not only its current
body direction relative to the allothetic skylight pattern, but also the rate of
its angular rotation, independent of whether it is moving or turning on spot.

Although the polarised light pattern is changing with elevation of the
sun, desert ants are able to use a stereotypical projection that resembles the
skylight pattern at dawn or dusk, respectively, in their memory (Wehner,
1997a,b, 1998, 2001). Unlike for the task to find a feeder at different daytimes
(Wehner, 1987; Wehner and Müller, 1993; Dyer and Dickinson, 1994) sun
movement need not be compensated to find back during an excursion, which
normally lasts only a few minutes, so the resulting error is negligible.

Although Ronacher and Wehner (1995) have shown that frontal optic flow
influences the ants’ odometer, the mechanisms to use allothetic cues for de-
tecting directions and rotations seem to be inappropriate for measuring dis-
tances or speeds. Therefore, additional tools making use of idiothetic signals
are needed.

1.2.2 Idiothetic signals

Far less is known about the use of idiothetic signals for the orientation of
desert arthropods. Compared to allothetic signals they seem to be of mi-
nor or no importance for detecting directions. Experiments with desert ants
have shown that it is possible to predict navigational errors by manipulat-
ing the visible section of the sky (Wehner, 1997a,b, 1998, 2001). Hence, the
ants obviously do not even revert to proprioceptive signals if the polarisa-
tion compass as standard tool provides strange results. Also desert beetles
Parastizopus armaticeps rely on the position of the light source and the po-
larisation compass and seem not to revert to proprioceptive cues in the case
of ambiguities (Bisch, 1999). Desert ants Cataglyphis fortis, when captured
at a feeder and transferred to a test area in a dark flask without any al-
lothetic signals available, immediately after their release do reorientate and
set out into their stored home direction (T. Merkle, personal observation).
Thus, any possibly existing idiothetic signals do not have an effect on the
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ant’s reorientation under such conditions.
On the other hand, Ronacher and Wehner (1995) found that desert ants

are able to estimate their walked distances without allothetic signals. There-
fore they proposed that ants use odometers that mainly rely on proprio-
ceptive signals. This is backed by investigations that could eliminate en-
ergy consumption as possible cue for measuring speeds or walking distances,
when ants walk along slopes (Wohlgemuth et al., 2002) or with heavy load
(Schäfer and Wehner, 1993). It seems quite obvious that such proprioceptive
signals derive from movements of the legs (for bristles as mechanoreceptors
cf. Keil, 1997).

2 Previous models of path integration

2.1 Geocentric models

The term path integration was established by Mittelstaedt and Mittelstaedt
(1973), referring to a simple and evident mathematical algorithm, namely to
determine the ant’s current position by integrating its moving direction θ(s)
along the migration path or, equivalently, by integrating its velocity vector
V (t) = v(t) θ(t) over time t, where v(t) denotes the ant’s forward speed.
This yields the estimated final positional vector P from start to end point
of the path. The estimated global home vector is then the inverse vector
G = −P .

2.1.1 Cartesian coordinates

Mittelstaedt and Mittelstaedt (1973, 1982) use cartesian coordinates to rep-
resent the integrated positional vector P = (x, y) and the current directional
vector θ = (cosφ, sinφ), where the animal’s angular orientation φ is given
relative to some reference direction, e.g. skylight polarisation. This is chosen
as the initial moving direction of the arthropod in their case study of the
spider Agelena labyrinthica. In their model the arthropod is supposed to
estimate the current angle φ in two different ways: by using an idiothetic
azimuth storage as integrated value of its proprioceptively measured turn-
ing rates ω(t) along the previous path (this idea of azimuth integration is
related to the earlier theory by Jander, 1957), or by directly measuring the
allothetic azimuth value φ of the current body axis with respect to an exoge-
nous direction. Then, the resulting two inputs of the directional vector θ are
weighted and summed up for path integration. With the aid of this model
the authors could reproduce typical two–segment experiments, during which
a light source had been turned by 90◦.

It should be noticed that the described model of Mittelstaedt and Mittelstaedt
(1973) is a closed-loop control system (“Wirkungsgefüge”) applicable to any
excursion of an arthropod, including the outbound route towards a food
source position P0, whose cartesian coordinates have to be internally stored,
or the homing route towards the origin P0 = (0, 0). In both cases the control
system produces an efferent motor signal for the turning angle ω being neg-
atively proportional to |P0−P | sin δ, where δ is the deviation angle between
current moving direction φ and the global vector G = P0 − P . By this
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steering algorithm, the arthropod will turn into the direction of the global
vector and walk towards P0 until the global vector is zero. Thus, the path
integration mechanism is supposed to work during the whole excursion.

This comprehensive navigation model has been adapted to experiments
with rodents (e.g. Mittelstaedt and Mittelstaedt, 1980; Benhamou, 1997) or
humans (Mittelstaedt and Mittelstaedt, 2001) and recently up–dated to be
consistent with results on neural activity patterns in the hippocampus of
mammals (Mittelstaedt, 2000). It provides important principles of informa-
tion processing, path integration, and motor control, and is mathematically
easily realizable in computer simulation programs. Nevertheless, it remains
open, whether and how the necessary computational steps of calculating
trigonometric functions are physiologically performed within the neural nets
of arthropods or mammals. Moreover, this model supposes two successive
integrating mechanisms including the necessity to store the computed vari-
ables, first φ =

∫

ω dt and then P =
∫

(cosφ, sinφ) ds, if integration is over
walked distance, s denoting arc length, or, P =

∫

(vθ)(t) dt, if integration is
over time. In the last case, besides determination of the turning speed ω,
also that of forward speed v is required (see Table 1).

The extensive work on neural “head cell” and “place cell” dynamics in
mammals could be mentioned here, with the remarkable property that a
change in angular information, represented by head cells, can induce a corre-
sponding rotation of the two–dimensional activity pattern in the imaginary
chart represented by the array of place cells (Samsonovich and McNaughton,
1997; Mittelstaedt, 2000). With regard to desert ants, Wehner (2003) postu-
lates the existence of a certain number of “compass neurons”, each with an
accurately defined compass direction resulting in a maximum firing rate of
the respective neuron, whenever the arthropod is heading into that direction.

2.1.2 Polar coordinates

Geocentric models in polar coordinates have been developed and applied dur-
ing the last 20 years by Wehner and Wehner (1986) and Müller and Wehner
(1988), taken up by Hartmann and Wehner (1995) in connection with dy-
namical representations by cyclical neural chains. In order to represent
the actual position vector P = r (cos ν, sin ν) of the arthropod, the pro-
posed model algorithms require the animal to compute, at least approxi-
mately, distance r from the nest and angle ν of the position vector rela-
tive to an allothetic reference direction, determined by the sun or, most fre-
quently, by polarised skylight. Then, the global home vector is G = −P =
r (cos(ν + π), sin(ν + π)).

For a segmented path with step length sn (taken to be 1 for simplic-
ity), Müller and Wehner (1988) derive approximate recursive formulas for
updating the polar coordinates (rn, νn) after the nth moving step. The only
additional input needed during each step, besides knowing step length (or
measuring forward speed), is the angle δ̃n = φn−νn between moving direction
φn and the direction νn of the positional vector. In a continuous description
the corresponding general path integration formulas read r =

∫

cos(φ−ν) ds
and ν =

∫

sin(φ−ν)/r ds and are equivalent to a system of nonlinear ordinary
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differential equations (see also Table 1)

dr

dt
= v cos(φ− ν) (1)

dν

dt
=

v

r
sin(φ− ν). (2)

Again, as in Section 2.1.1, this mathematical integration algorithm requires
the ability to calculate the nonlinear trigonometric functions and, in addi-
tion, to perform the division by distance r. Müller and Wehner (1988) and
Hartmann and Wehner (1995) suggested the trigonometric functions could
be approximated by piecewise linear or polynomial functions. This led to
a systematic misestimation of increments in both variables, r and ν, for
moving directions not parallel or antiparallel to the position vector, i.e. for
δ̃ = φ − ν 6= ±π. Müller and Wehner (1988) thus could remarkably well
reproduce systematic errors in the angular component ν of the global vector,
observed in the classical two–segment experiments, not only for desert ants
but also for most arthropods and mammals (e.g. Bisetzky, 1957; Görner,
1958; Müller and Wehner, 1988; Séguinot et al., 1993). In Section 4.3 we
give a detailed analysis of this topic.

2.2 Egocentric models

Another approach, which appears to be more adequate but came into con-
sideration much later, is to model the path integration process of a moving
animal in terms of a moving coordinate frame centred around the animal’s
body, thus reflecting the fact that it perceives all sensory inputs relative to
its own position and orientation. Benhamou et al. (1990) chose polar coor-
dinates to represent the global vector G = −P = r (cos δ, sin δ), where now
the reference direction for δ = 0 is the body axis, serving as X–axis of the
corresponding cartesian coordinate frame with the orthogonal lateral Y –axis,
see Fig. 1. Although the distance variable r is the same as in the geocentric
polar model, the derived recurrent formulas for updating rn and δn turn out
to be much more complicated than any other formula used before. First,
egocentric cartesian coordinates (Xn, Yn) are updated in terms of the former
polar ones,

Xn+1 = rn cos(δn − ωn)− sn (3)

Yn+1 = rn sin(δn − ωn) (4)

where ωn denotes the change of the direction and sn the length of the sub-
sequent step. (An interchange of the order of stepping and turning would
give sn+1 in (3) but no fundamental change). Then, these equations are
transformed into the new egocentric polar coordinates:

rn+1 =
√

Xn+1
2 + Yn+1

2 (5)

δn+1 = arctan

(

Yn+1

Xn+1

)

(6)

(in order to calculate the correct values of δn+1 the signs of Xn+1 and Yn+1

have to be considered, see Benhamou and Séguinot, 1995).
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The advantage of this egocentric model is that now the only input vari-
ables are step length sn and turning angle ωn, or, in the corresponding con-
tinuous path integration model, forward speed v and angular turning rate
ω. Gallistel (1990) considered the corresponding differential equation using
egocentric polar coordinates in the continuous limit of infinitely small time
steps which, in the corrected formulation by Benhamou and Séguinot (1995),
are

dr

dt
= −v cos δ (7)

dδ

dt
= v

sin δ

r
− ω. (8)

These equations can directly be obtained form the corresponding polar co-
ordinate equations, Eqs. (1) and (2), by performing a simple angular trans-
formation, δ = ν + π − φ, so that again they require to compute division by
r and trigonometric functions (see also Table 1).

In their simulation analysis, Benhamou et al. (1990) studied the influence
of random errors on the estimation of changes of direction and walking dis-
tance. With regard to directional changes, they distinguished between allo-
thetical and idiothetical orientation: they considered idiothetical estimation
as “measuring the change of direction itself”, whereas the allothetical estima-
tion is defined as “a comparison between the heading of current and previous
step relative to some exteroceptive compass” (Maurer and Séguinot, 1995).
The different estimation procedures were realized by providing the actual
values with normal distributed errors.

In their simulations random errors of allothetic signals had only little
influence, whereas those of idiothetic signals lead to noticeable misestimation.
Benhamou and Séguinot (1995) conclude that the egocentric coding process
is quite sensitive to idiothetic errors and organisms relying on allothetic cues
for measuring directional changes by far outmatch those relying on idiothetic
cues.

3 Cartesian model for egocentric path inte-

gration

3.1 System of linear differential equations for the global

vector

The physiological sensing and locomotion apparatus of any arthropod is com-
pletely bound to its body. It is therefore naturally related to its two sym-
metry axes, the posterior-anterior axis and the perpendicular right-left axis.
Thus, when identifying these symmetry axes with the X and Y axis of a
cartesian coordinate frame (X, Y ) and taking the arthropod’s body centre
as the origin (0, 0), this constitutes a proper planar moving coordinate frame
for representing the relative position of any object in the planar neighbour-
hood of the arthropod, e.g. its nest. In this egocentric cartesian model the
global vector pointing from the arthropod’s body to the nest, relative to the
animal’s actual body axis orientation, is just G = (X, Y ), corresponding to
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the same vector as in Section 2.2, there only written in polar coordinates, see
Fig. 1. Notice that the original ansatz by Benhamou et al. (1990) already
mentioned this cartesian coordinate system, but then switched to polar coor-
dinates for path integration (see Section 2.2). Indeed, the continuous version
of Eqs. (3) and (4), given the arthropod’s forward speed v and angular turn-
ing rate ω, yields the following model equations for a precise update of the
global vector (X, Y ) during motion

dX

dt
= −v + ω · Y (9)

dY

dt
= −ω ·X (10)

Compared to all other continuum equations or analogous discrete recursion
algorithms developed previously (see Section 2), this two–dimensional differ-
ential equation system is remarkably simple: It is linear in the two variable
quantities X and Y , and it just uses the two speed input parameters as
additive or multiplicative terms, v representing the rate of shifting the X co-
ordinate backwards, ω the rate of rotating the (X, Y ) frame clockwise. These
operations can be easily performed by any suitable elementary analogue cir-
cuit network like the one shown below in Fig. 3. Possible physiologically
realizable neural representations are briefly addressed in the Discussion Sec-
tion 5.

In conclusion, this cartesian egocentric path integration model, considered
as a precise ‘dead reckoning’ system, offers the most simple computational
scheme to determine the global vector and, simultaneously, being related to
a coordinate frame of the moving arthropod. For comparison with the other
models see Table 1.

Clearly, biological solutions of difficult problems can be complex and the
simplicity of our model does not make its realisation more likely than that
of other models. From a conceptional point of view the existence of a simple
solution is nevertheless striking, and in the following we shall present its
implementation and results.

Input variables Internal variables Global vector

Geocentric

Cartesian
(Sect. 2.1.1)
Polar
(Sect. 2.1.2)

ω,v or ωn,sn

φ
sn or v

φ, P = (x, y)
〈lin./nonlin. ODE〉
r and ν
〈nonlinear ODE〉

G = P0 −P

G = −r (cos ν, sin ν)

Egocentric

Polar
(Sect. 2.2)
Cartesian
(Sect. 3)

ω,v or ωn,sn

r and δ
〈nonlinear ODE〉
X and Y
〈linear ODE〉

G = r (cos δ, sin δ)

G = (X, Y )

Table 1: Path integration models with the parameters and variables used for
input, internal calculation and output as global vector. For notations and
more details see the various model descriptions in the text.

9



δ

r

X−axis

Y−axis

forward direction

nest

X

Y

G

Figure 1: Theoretical scheme of egocentric path integration by means of
cartesian coordinates X , Y specifying the position of the nest relative to
the arthropod’s body axes and determining the global vector G = (X, Y ),
here with X < 0, Y > 0. In contrast, the corresponding model in polar
coordinates (Section 2.2) uses the two variables r, distance to the nest, and
δ, angle between head orientation and nest direction.

3.2 Modelling foraging excursions, reorientation, and
homing

Our path integration model depends on the values of v and ω, cf. Table
1. These can be regarded as the elementary physiological control variables
which the arthropod uses to steer its locomotion, e.g. by changing speed or
frequency of striking leg motion on both sides or, respectively, on one side
relative to the other.

In order to model typical paths of directionally persistent random walks,
as observed for desert arthropods, one has to account for mean values and
standard deviations of speed v and turning rate ω as well as for their tem-
poral auto-correlations which can be extracted from corresponding experi-
mental time series (see Alt, 1990). Discrete correlated random walk models
sometimes used (e.g. Byers, 2001) are not adequate as they assume piecewise
constant walking directions φn and turning angles ωn. The two speeds v(t)
and ω(t) = dφ(t)/dt, however, being related to the physiologically controlled,
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relatively fast leg movement on both sides of the arthropod, should better
be modelled as fluctuating continuous processes on an adequate smoothness
level. The simplest stochastic process of this kind is described by the follow-
ing two independent Ornstein–Uhlenbeck equations for first order coloured
noise, which have previously been used also for modelling the systematic
search of arthropods (Alt, 1995),

dv =
1

Tv
(v0 − v) dt+ βv dWt (11)

dω =
1

Tω
(ω0 − ω) dt+ βω dWt (12)

Following the standard approach, random perturbations are expressed as
additive Wiener increments dWt (Itô and McKean, 1965). In simulations
one uses a sequence of values v and ω with finite time differences τ ,

vt+τ = vt +
τ

Tv
(v0 − vt) + βv

√
τ ζ (13)

ωt+τ = ωt +
τ

Tω

(ω0 − ωt) + βω

√
τ ζ (14)

where ζ denotes a standard normally (N (0, 1)) distributed random variable,
drawn independently at each step for each variable. Eqs. (11) and (12) are
obtained in the limit τ → 0. v0 and ω0 are the preferred values of forward
and turning speed, respectively, and the Tv|ω denote the corresponding mean
persistence times of fluctuations with amplitudes βv|ω. In case of a stationary
time series they yield variances of size σ2

v|ω = β2
v|ωTv|ω/2 by an equilibrium of

perturbations with strength βv|ω and decay at rate 1/Tv|ω. In our presenta-
tion we assume, for simplicity, that Tv is negligibly small, such that during
locomotion the forward moving speed has a constant value v ≡ v0. The
presented results also hold for the general case of fluctuating forward speed.

In the following, we describe the three successive phases of an arthropod’s
typical excursion, using the egocentric path integration system Eqs. (9), (10)
and the physiological motion control system Eqs. (11) and (12). We explain
the corresponding dynamics of the global vector by means of a simulated
example presented in Fig. 2.

• Phase 1: (Foraging)
The arthropod starts foraging at the nest site, e.g. (x0, y0) = (0, 0),
where the global vector is reset to zero G = (X, Y ) = 0. Holding the
mean turning rate ω0 = 0, the animal approximately keeps its chosen
initial direction, φ = φ0, for some time, leading it almost straight away
from the nest, corresponding to increasingly negative X values of the
internal global vector, while the Y component stay close to zero. This
initial behaviour is well expressed in the example of Fig. 2, then followed
by a random right-hand turn of the (x, y)-path, which corresponds to
increasingly Y values meaning that now the nest lies to the right side
the animal.

• Phase 2: (Reorientation)
After finding food at some position P1 = (x1, y1), the arthropod stops
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Figure 2: Model simulation of a natural outbound path and the successful
return path back to the nest due to precise path integration, according to
the 3-Phase-model, see text. Parameters used for calculations are, (1) for
the outbound path Tω = 0.3 s, βω = 1 s−3/2, and constant forward speed
v ≡ v0 = 0.2 m/s, (2) constant ωrot = 1 s−1 during rotation and (3) for
homing the same as in (1) but a feedback constant c = 1/0.05 s−1 for beacon
steering. (Top left): Plot of the actual path in cartesian (x, y)-coordinates of
an observer. Position of the nest at (0, 0) is marked by a filled circle. (Top
right): Corresponding plot of the nest position in the same scale in relative
cartesian (X, Y )-coordinates, where the origin denoting the home position is
marked by a filled circle. Note that the animal’s head direction is the X–
axis pointing upwards, while the lateral Y –axis points to the left. (Bottom):
Corresponding plots of X and Y over time.

there in its current angular orientation, φ = φ1, keeping the actual
global vector G1 = (X1, Y1) internally stored (even during handling the
food). Then the arthropod starts its reorientation phase by turning
on spot, say with constant rotation speed ω ≡ ±ωrot, depending on
whether the stored global vector G1 has positive or negative Y1 value.
During rotation the global vector G = (X, Y ) also rotates according
to path integration in Eqs. (9) and (10), since now we set v ≡ v0 =
0. Finally, the arthropod is assumed to stop its rotation (ω = 0) as
soon as the condition Y = 0 is fulfilled, meaning that now its head is
oriented towards the nest and the actually positive X-value represents
the arthropod’s distance from the nest (cf. the scheme in Fig. 3). For
the example in Fig. 2, see the counter-clockwise rotation circle ending
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on the positive X axis. Notice that the condition Y = 0 corresponds to
δ = 0 in egocentric polar coordinates (Section 2.2 and Fig. 1) because
of the equivalences Y = r · sin δ (≈ rδ for small δ) and X = r · cos δ
(≈ r + rδ2/2 for small δ).

• Phase 3: (Homing)
The arthropod now returns back to the nest (as straight as possible)
according to the actually stored global vector G = (X, 0). Since dur-
ing walking the global vector will be constantly updated and, due to
inevitable random perturbations, the Y component will eventually de-
viate from the zero value, the arthropod must tend to hold the internal
steering condition Y = 0 as closely as possible. This can be modelled
by implementing a counter-steering turning rate ω0 = −cY into the
stochastic differential equation (12). See Fig. 3 for an analogue circuit
scheme describing this feedback control, which nonlinearly and cycli-
cally couples the linear path integration system, Eq. (9) and (10), to
the linear motor control equation (12).

Finally, in our model the arthropod is assumed to stop its return phase
as soon as the X value of its global vector becomes zero. The resulting
home path in the simulated example of Fig. 2 clearly shows, how some
random perturbations lead to small deviations in the homing direction
of the (x, y) path and corresponding small Y deviations of the global
vector, while the X component is almost linearly decreasing to zero.

Notice that, according to this modelling scheme, the path integration
system in Eqs. (9) and (10) is supposed to work constantly in the arthro-
pod’s neural system during foraging, reorienting, and homing, except when
the animal is seriously perturbed and not any more able to ‘measure’ and
‘control’ its forward motion and directional turning. If this happens, the
animal is assumed to instantaneously halt the path integration system and
keep the actual value of the egocentric global vector and the orientational
angle (with respect to an allothetic visual cue) stored until it can proceed in
an unperturbed way.

Let us emphasise, that the presented internal dynamics of the global vec-
tor G = (X, Y ) determined by the simple linear system differential equa-
tions (9) and (10), could equivalently be described in polar coordinates
G = r (cos δ, sin δ) using the more complicated nonlinear differential equa-
tions (7) and (8), including the ‘rotation stop condition’ δ = 0 and the
counter-steering term ω0 = −c r cos δ or a stronger variant like ω0 = −c̃ δ.
However, there is an important difference in modelling the ‘nest stop condi-
tion’: In polar coordinates, the obvious termination criterion would be chosen
as r = 0 meaning that the global vector G becomes exactly zero. It remains
to be proven, which counter-steering rule could guarantee that this condition
is attainable for stochastically perturbed random paths.

In contrast, the proposed termination criterion X = 0 in cartesian co-
ordinates would, for randomly perturbed return paths, generically result in
a non-vanishing small Y value, then representing the lateral distance of the
arthropod to the nest. Thus, depending on this value and on the current
orientational angle of the animal, the realized ‘stop position’ can fluctuate
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around the true nest position, even in the so far considered case of precise
path integration. The size of this random error increases with the length of
the home vector, i.e. the distance between food and nest. This corresponds
to experimental observations (e.g. for desert ants C. fortis T. Merkle, unpub-
lished data) which furthermore show that the length of the outbound path
also contributes to such a positional error. Therefore, other errors in path
integration, being accumulated along the path, have also to be considered,
which is the topic of the following Section.
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Figure 3: Analogue circuit scheme of the egocentric cartesian path integra-
tion model: dynamics of the two variables X and Y according to the dif-
ferential equations (9) and (10) and its coupling to the physiological control
parameters represented by the two speed parameters for turning, ω, and for-
ward locomotion, v. In Phase 1, ω and v are externally controlled (random
search, trained path towards feeder, . . . ). During Phase 2 and Phase 3
the X and Y values feed back into the speed control conditions such that,
by counter–steering with respect to the ‘internal beacon’ Y = 0 in the lat-
ter case, equations (9), (10) and (12) constitute a coupled nonlinear control
system along the homing path.

4 Systematic errors

It has been shown that many arthropods (e.g. Bisetzky, 1957; Görner, 1958;
Hoffmann, 1985b; Wehner and Wehner, 1986; Müller and Wehner, 1988) but
also mammals (e.g. Séguinot et al., 1993; Etienne et al., 1996; Séguinot et al.,
1998) exhibit errors in determining the exact homing direction. In gen-
eral, we have to distinguish between random errors and systematic errors
during path integration. There is evidence that random errors, in addi-
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tion to the home vector steering error mentioned above, can originate from
inaccurate measurements of angles or distances, whereas systematic errors
probably arise at the neural level of the organism (Benhamou et al., 1990;
Séguinot et al., 1998). Orientation is less error prone if allothetic reference
frames are available, as polarised skylight for arthropods (e.g. Wehner, 1998,
2003), but a more difficult task if not, as for mammals (Etienne and Jeffry,
2004). Systematic errors play an important role, as the classical two–leg
experiments (L-shaped angular turning tests) have shown in both mammals
(e.g. Maurer and Séguinot, 1995; Etienne et al., 1996) and arthropods (e.g.
Müller and Wehner, 1988; Bisch, 1999). Apart from mistakes that concern
directional aberrations, there occur also errors by underestimation of dis-
tances (Sommer and Wehner, 2004).

From an evolutionary point of view the presence of systematic homing
errors is interesting and has not been explained to date. It may have an
advantage that a homing animal typically assumes a shorter path and ends
up in front of its nest. It would then avoid an overshoot and find familiar
features that it has just passed on the outgoing path which might help to
reach the nest’s entrance.

In this Section we implement two types of systematic errors into our
model. One concerns the estimation of nest distance following Sommer and Wehner
(2004), the other exhibit different variations in processing the turns during
path integration. All of them predict systematic deviations from correct
homeward courses and are based on feasible neural assumptions, or reproduce
behaviours that have been observed during experiments. They may serve as
a basis for ongoing and future studies of systematic deviations (T. Merkle,
unpublished data).

4.1 Underestimation of turning angles

Müller and Wehner (1988) trained desert ants to run through two channels of
10m and 5m length and varied the connecting angle between them in several
steps from 0 to 180◦, see Figs. 4 and 5. The ants miscalculated their covered
outbound route and, after leaving the second channel’s end, turned about an
angle which was larger than the correct one leading home. The authors repro-
duced this error very well by a simple formula, which accumulates systematic
miscalculations in path integration whenever the animal walks different from
the direct inbound and outbound directions. In Fig. 5 the angular aberration
function ε is shown, computed according to the approximative path integra-
tion model by Müller and Wehner (1988). In general, this function fits quite
well observations in other arthropods and mammals (Séguinot et al., 1993;
Bisch, 1999). Here we show that other error models can also reproduce these
data. For evaluation and fitting of the corresponding error functions (see
plots in Fig. 5) we use the advantages of our egocentric path integration
system.

As a first error mechanism we consider a systematic underestimation of
body axis rotation. In principle, that error could occur during the estimation
of ω, i.e. by simply perceiving a value lower than the actual value, or on the
neural level. The high accuracy concerning the ability of desert arthropods
measuring rotations makes it very likely that this error may be created on
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the neural level. Therefore, we assume the animal perceives the correct
value ωreal, but uses a different value ωproc for processing the path integration
according to the differential equations (9) and (10).

In a first choice the underestimation is taken to be a linear function of
the real value,

ωproc = λ ωreal (15)

with a factor λ < 1 (error LU in Table 2). In a second variant, the fully
saturated underestimation, ωreal is processed correctly for small values but
saturates towards a certain maximal turning rate ωc (error NLUs in Table 2),

ωproc =
ωc

ωc + |ωreal|
ωreal (16)

A linear combination of both is given by the error NLU in Table 2,

ωproc =

(

λ+
1− λ

ωc + |ωreal|
ωc

)

ωreal (17)

which again processes small values correctly.
For a related choice of errors we assume a temporal delay τdel in processing

the information of ωreal(t); the same underestimation could, in principle,
be assumed also for vreal(t), but here variation on natural outbound paths
is rather low (T. Merkle, personal observations on desert ants Cataglyphis
fortis). Phenomenologically such a delay is implemented by a linear ordinary
differential equation representing a first order filtering process, namely

dωproc

dt
=

ωreal − ωproc

τdel
(18)

such that ωproc is smeared out on a scale of τdel as compared to ωreal (error
PD in Table 2).

4.2 Underestimation of distance to the nest

The error due to distance underestimation, which we consider here, has pre-
viously been referred to as leaky integrator by Sommer and Wehner (2004).
This idea can be implemented into our egocentric cartesian path integration
model in a straightforward way: with a constant rate the integrated global
vector “leaks” or decays from the memory. Thus, the two–dimensional model
Eqs. (9) and (10) are varied by simply adding a proportional decay term in
each equation (error LI in Table 2)

Ẋ = −v + ωrealY − X

τL
(19)

Ẏ = −ωrealX − Y

τL
(20)

with mean decay time τL. Also in egocentric polar coordinates, c.f. Eqs. (7)
and (8), the leaky integrator is easily expressed by a proportional decay of
radial distance r, see Table 2.
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In the case of a one–dimensional path, e.g. always walking along x without
any turns (ωreal ≡ 0), Eqs. (19) and (20) lead to an exponential underesti-
mation (xue) of the actual walking distances (x) as

xue = ξL (1− exp(−x/ξL)) . (21)

The estimated distance xue saturates at a length ξL = vτL in the limit of
long walking distances x, but for short paths x ≪ ξL the error is small and
x ≈ xue.

This is precisely the best fit to the experiments performed by Sommer and Wehner
(2004). The authors trained desert ants to walk through linear channels to
a feeder. Afterwards the ants were captured at the feeder and released in a
linear test channel. They headed off in homeward direction and performed
a back and forth search around their assumed nest position. By extracting
xue from the search behaviour, Sommer and Wehner found the relation of
Eq. (21).

In a truly two–dimensional path the leaky integrator of (19) and (20) may
also lead to an angular deviation of the search path from the true homeward
direction. Earlier sections of the outgoing path have decayed in the memory
more than later ones. If the animal has turned in–between, this will result in a
different misestimation of related directions and, consequently, in a homing
angle misestimation. In Fig. 4 this is explained for the classical two–leg
experiment of Müller and Wehner (1988).

There is, however, a quantitative mismatch between the fit of the LI
equations (19) and (20) to the experiments of Müller and Wehner (1988)
and to those of Sommer and Wehner (2004). In the latter case one obtains
ξL ≈ 90m which is substantially different from the value of 18m of the fit
to Müller’s and Wehner’s two–leg experiments. At present we conclude that
most likely some part of the error occurs during the turn. To fully answer
this contradiction, one would have to take into account more details of the
ants’ walks, such as, e.g., walking speed or waiting times.

Up to now we have proposed different elementary error mechanisms.
Based on current knowledge of sensoric and neural processes it is not pos-
sible to prove or refuse their validity. They nevertheless lead to non–trivial
consequences which are not immediately visible but can be seen in simulated
realizations of outbound routes together with the path integration procedure.

4.3 Resulting deviations

First, we document the outcome of a simulated experiment as in Müller and Wehner
(1988). The left side of Fig. 4 shows a sketch of the two–leg experimental
setup which in Müller and Wehner (1988) had lengths a = 10m and b = 5m.
The ant starts at the nest (open circle), turns after distance a by an angle
0 ≤ α ≤ π to the right, leaves the channel after another walked distance b
(at the black circle), thereby overcompensating its turn to the correct home
direction by an angular deviation ε.

The right side of Fig. 4 represents this path in the internal (X, Y )–
coordinates. First consider a correct processing without any systematic error:
X decreases to −a (thick black line) and Y = 0, then the animal turns by an
angle α, such that now X = −a cosα and Y = −a sinα (black dashed line),
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Error Differential Equations

Turning rate underestimation
LU linear underestimation of ω

ωproc = λ ωreal, 0 < λ < 1
NLUs fully saturated underestimation

ωproc =
ωcωreal

ωc + |ωreal|
with ωc > 0

NLU partially saturated underest.

ωproc = ωreal

(

λ+
1− λ

ωc + |ωreal|
ωc

)

PD processing delay

ω̇proc =
ωreal − ωproc

τdel

Ẋ = −v + ωproc Y

Ẏ = −ωproc X

Nest distance underestimation

LI Leaky integrator

egocentric cartesian

egocentric polar

Ẋ = −v + ωreal Y −X/τL

Ẏ = −ωreal X − Y/τL

ṙ = −v cos δ − r/τL

δ̇ = v sin δ/r − ωreal

Table 2: Error types in path integration and their respective formulae.
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Figure 4: Angular deviation ε in the two–leg experiment with channels of
length a and b, respectively, and clockwise connecting angle α. (Left side):
Experimental situation as observed in geocentric (x, y)–coordinates. (Right
side): Representation of the global vector in internal (X, Y )–coordinates;
correct representation indicated by thick black line, dashed during counter-
clockwise turn about angle α. Angle underestimation leads to turn by α′ < α
and angular aberration ε after leaving the second channel (black dot–dashed
line). Leaky integrator is shown in grey, also leading to angular deviation.
For more details see text.

finally X decreases further to X = −a cosα− b, whereas Y remains constant
(black solid line with black circle). Angle underestimation would result in a
turn by α′ < α such that in the end X = −a cosα′− b (dot–dashed line with
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black circle) which lies off the true direction to the nest by an error angle ε.
A similar result is obtained by the leaky integrator (fat grey lines): First X
decreases from 0 to −ξL (1− exp(−a/ξL)) and Y remains 0 (thick grey line),
then X and Y are turned by an angle α (dashed grey line). The turn occurs
so fast that “leakage” can be neglected (τturn ≈ rturn/v ≪ τL, see also below).
During the final decrease of X , both the values of X and Y “leak” such that
finally

XL = −ξL
[

e−b/ξL
(

1− e−a/ξL
)

cosα+
(

1− e−b/ξL
)]

(22)

YL = −ξL e−b/ξL
(

1− e−a/ξL
)

sinα (23)

which is indicated by the filled grey circle, again resulting in an angular devi-
ation ε (in the sketch, for simplicity, the same as for angle underestimation).

The three upper curves of Fig. 5 show theoretical predictions for the
angle error ε in the two–leg experiment of Müller and Wehner: the error
according to the formula of Müller and Wehner (1988) calculated numerically
as a function of the angle 0 ≤ α ≤ π between the outgoing channels in radian
units (solid line); the best fit of turning underestimation (dashed line), i.e.
λ = 0.87 in Eq. (15), and for the leaky integrator (dash–dotted line), τL = 90
s in Eqs. (19) and (20). The same model errors are applied to a Z–shaped
channel and shown in the three lower curves with the same coding (solid,
dashed, dotted). Note that errors are smaller, but deviations cancel only
partially.

Nonlinear underestimation of the angular turning rate, Eqs. (16) and (17),
does not show any different behaviour from (15), because we can assume a
constant turning rate ωturn = v/rturn = 4 s−1 given by the ratio of the walk-
ing speed v = 0.2 m/s and radius of the turn in the channel rturn = 0.05 m,
which is half the wall to wall distance, because in experiments deserts ants
tend to keep equal distance to both channel walls (T. Merkle, personal ob-
servation). However, nonlinear underestimation will lead to different results
for arbitrarily curved paths as we will see next.

To investigate how well the different types of systematic errors fit ran-
dom outbound paths we simulated runs, as they might be performed by an
untrained ant searching for food without any knowledge on food sources (see
Fig. 8, upper panel). In particular, we considered a fluctuating turning rate
ω(t) with a persistence time Tω as in Eq. (12) of the model in Section 3.2. For
1000 such runs we extracted correlations between characteristic indicators of
the path, such as its integrated curvature φend − φ0 =

∫

ω(t) dt, and the two
most direct measures for homing deviation: the angular misestimation ε be-
tween calculated and correct homeward course, and the euclidean distance ∆
between supposed and real nest positions.

The results are shown in Fig. 6. There is a clear correlation between
curvature

∫

ω and the directional mismatch of the homing vector, for all
error mechanisms except for perception delay (see left panels in column). In
particular, all mechanisms tend to overcompensate turns effectuated during
the outbound path, as there is a positive correlation between

∫

ω and the
deviation angle. Remind that all predict overcompensation for the two–leg
experiment of Müller and Wehner as well.

There is a striking difference between the leaky path integrator and the
approximative integration formula of Müller and Wehner on one side, and
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Figure 5: Error angles ε as a function of the intermediate turning angle in
the two–leg experiment (three upper curves) and a Z–shaped channel with
three parts of 5 m length each (three lower curves) in radian units. Solid
lines (MW): Deviation following Müller and Wehner (1988); dashed (LU):
linear underestimation of turning rate with λ = 0.87; dotted (LI): leaky
integrator with τL = 90 s (resp. ξL = 18 m). Linear underestimation cannot
account for correct path integration under full turns (α = π) but does well
for 0 ≤ α ≤ (5/6) π. In the Z–shaped channel errors are smaller than for
single turn and experimentally visible (if at all) only for angles around 150◦

(= 5π/6) with errors MW and LU.

turning rate underestimation on the other side: The first two predict a larger
euclidean distance from the nest for paths where left and right turns com-
pensate (

∫

ω ≈ 0) and come closer to the nest when there is a substantial net
turn, resulting in ∧–shapes in the right hand panels of rows 1 and 2 in Fig. 6.
On the other hand, turning rate underestimation predicts smaller distance
to the nest for compensated turns, and larger euclidean mismatch for paths
with higher turns, leading to ∨–shapes of lines 3 and 4 in the right hand pan-
els. Experiments which cover both the full return path and the systematic
search, additionally to the initial direction analysed by Müller and Wehner
(1988) may be able to decide the type of homing error mechanism in desert
ants (T. Merkle, in preparation).

Fig. 7 shows the homing errors produced by different error types as
functions of the distances d between start and end points of foraging trips
that had the same overall path lengths. Thus, the values of d indicate the
sinuousity of the different paths: straight paths have large, winded paths
small d. Roughly speaking the error of the leaky integrator increases with
d and becomes maximal for perfectly straight paths. The error postulated
by Müller and Wehner (1988) also increases with d over a wide range, but
decreases for very large values for almost straight paths. Angle underestima-
tion yields an opposite picture, the deviation decreases over the entire range
of d, although large fluctuations may obfuscate measurements. Clearly these
findings have to be further developed in comparison to real experiments, but
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Figure 6: Homing error for different path integration error types as function
of integrated curvature

∫

ω(t) dt = φend − φ0 (in radians, 2π for full turn) of
1000 simulated random outbound runs of length 20 m each. (Left columns):
angular deviation ε in radians; (right columns): euclidean distance ∆ from
nest in metres. (Top row, MW): error of Müller and Wehner (1988); (2nd
row, LI): leaky integrator with τL = 300 s; (3rd row, LU): linear underesti-
mation of ω(t) with λ = 0.87; (4th row, NLU): nonlinear underestimation;
(bottom row, PD): perception delay with τdel = 0.3 s exhibits no systematic
dependence on curvature.

they indicate how field work can enable an observer to differentiate between
various error types.

A difference is also visible in the predictions for the supposed nest posi-
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Figure 7: Homing error in euclidean distance ∆ between supposed and real
nest position as function of distance between starting and end point of forag-
ing path, i.e. distance of feeding site from nest, 0 ≤ d ≡ |P (t1)−Px(0)| ≤ 20.
Simulated paths had arch length 20 m, so d = 20 m means a perfectly straight
path. (Top): The leaky integrator predicts increasing ∆ with d, whereas ac-
cording to Müller and Wehner (1988) ∆ has a maximum for intermediate d
(middle). (Bottom): Angle underestimation leads to an opposite relation, ∆
decreasing with d. Same parameters as in Fig. 6.

tions, as presented in Fig. 8. In its upper panel it shows the endpoints of
two random outbound runs of length 20 m (one in black, the other one in
light grey), together with the respective supposed nest locations under differ-
ent error mechanisms: the formula of Müller and Wehner (MW, marked by
+), linear (LU, ✷) and nonlinear (NLU, ✸) underestimation with λ = 0.87
and ωc = 0.2 s−1 and turning perception delay with τdel = 0.3 s (PD, △).
The time constant for the leaky integrator (LI, ×), τL = 300 s, was chosen
such that it best fitted the results of the phenomenological error formula of
(Müller and Wehner, 1988). In the lower panel of Fig. 8 the same is shown
for 100 paths (without the paths themselves), where all runs start in the
same initial direction φ0 = 0, such that the end points (◦) lie in a sickle
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Figure 8: Supposed nest locations for different error types. (Upper panel):
Two simulated random outbound paths both starting in direction φ0 = 0
and having arch length 20 m (black and grey) with supposed nest locations
according to Müller and Wehner (+), leaky integrator with τL = 300 s (×),
underestimation of ω with λ = 0.87 and ωc = 0.2 s−1 (linear: ✷, nonlin.:
✸) and processing delay of ω with τdel = 0.3 s (△). Note that (+) and (×)
are relatively close. (Lower panel): End points of 100 simulated outbound
paths (◦) with supposed nest positions after Müller and Wehner (+), leaky
integrator (grey ×), and ω–underestimation (✷). Real nest marked by filled
white circle. Note that (+) and (×) coincide well, in front of real nest. (✷)
are grouped closely around the nest. Units are in metres.

shaped domain to the right. Again there is a striking coincidence between
the leaky integrator and Müller’s formula as opposed to the results of turning
rate underestimation. Notice that only the two first error mechanisms lead
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to a home vector pointing to a location in front of the actual nest (see small
sickle–shape domain to the right of nest position).

5 Discussion

In this work we have presented a very simple model for path integration
using egocentric cartesian coordinates. In contrast to all previous models,
including the egocentric one using polar coordinates (Section 2.2), in this
model the arthropod does not need to perform complicated calculations such
as applying trigonometric or other non–linear functions, but rather updates
two cartesian coordinate values of the relative global vector G = (X, Y ) by
computing a simple system of linear differential equations. Moreover, al-
though we assume that neither the actual relative angle δ nor the distance
r to the nest have to be calculated or stored at any time, solely by using
the internal G–vector information the arthropod has the ability to orient
towards the nest position at any time along its path and to hold this orien-
tation during the home run. Keeping Y = 0 serves as an ‘internal beacon’
for home orientation, where the simple counter–steering mechanism can be
realized as an elementary negative feedback control of the turning rate by the
internal variable Y , until the second internal variable X reaches the desired
zero value. Thus, the path integration values (X, Y ) do not only provide a
record of the arthropod’s positional movement, but can also be used as in-
formation input for orientation. Moreover, accumulated information on the
whole internal (X, Y )-path, as depicted in Fig. 2, for example, may be used
by the arthropod to guide its observed systematic search for the ‘true’ nest
position after failure. This could be done by estimating the probability of
how far away the nest is located, depending on the probability of the accu-
mulated path integration error. For previous experiments and theories see
Hoffmann (1990).

In order to prepare the theoretical background for further investigations,
we have restricted this first presentation to (i) construct our model, (ii) imple-
ment various error mechanisms and (iii) evaluate their predictions for future
comparison with experiments by stochastic simulations. Figs. 6 and 7 sug-
gest simple checks to accept or exclude one or another error mechanism and
therefore can serve as a guide for future experiments and modelling.

The mechanisms suggested here could also be tested in experiments with
specially designed channels for outbound runs. Different types of angle mis-
estimation would e.g. lead to different systematic deviations of the home run
in a channel where left turns are sharper than right turns. Differences be-
tween the leaky integrator and angle–misestimation should become apparent
in a comparison between two different two–leg experiments, e.g. both with
α = π/2, but two different values a1 6= a2 which both would be substantially
larger than b.

Physiological realizations of the integration procedure itself and the un-
derlying fundamental neural mechanisms are far from being clarified. Be-
sides, a clarification of the neural processes working in the brain and the lo-
comotory control apparatus of desert arthropods does not seem to be within
reach in the near future. We share this problem with all other existing models
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of path integration.
On the other hand, anatomic features of neurons, their interactions, their

integration, and their cooperation within networks have been known for a
long time. Hartmann and Wehner (1995) have developed a simple and effi-
cient neural network for path integration in desert ants. In a particular form
it even incorporates the systematic errors observed by Müller and Wehner
(1988) on a neural level. Based on their model of an incremental encoding
one could easily construct a neural architecture for path integration in carte-
sian variables X and Y as in Eqs. (9) and (10), where the required estimation
of speeds could most likely be encoded by spike rates of afferent neurons.

A further, much simpler way would be to represent the internal cartesian
coordinates (X, Y ) directly by the deviations of two non–spiking interneuron
activities NX and NY from their basal activity values NX

0 and NY
0 supposed

to be attained when the animal is ‘at home’, i.e. for (X, Y ) = (0, 0). Reg-
ulation of these interneurons as well as their mutual interactions could then
be realized by suitably defined dendritic synapses of a neural net akin to
the scheme presented in Fig. 3. Again, the obvious simplicity of this ‘lin-
ear’ control network may favour the egocentric cartesian path integration
model as candidate for a most elementary neural realization in the arthro-
pod, compared to other, more complicated models. Although mathematical
simplicity is not an ad–hoc argument to explain natural evolution of bio-
logical control systems, it is tempting to “grow”, i.e. let develop by evolu-
tionary algorithms, neural networks for the task of orientation and analyse
their mathematical structure post–hoc, as it has been done for robot motion
control (Pasemann et al., 2001).

The ability to find successful feeding sites, also observed for beetles, for
instance (von Frisch, 1965), was particularly investigated in detail for desert
ants (Wehner et al., 1983; Wehner, 1987; Collett et al., 1999). It is therefore
a natural question to ask, whether a similar simple rule as that of keeping
Y = 0 may help to find a previously known feeding site. Consider all trajec-
tories in geocentric coordinates which keep the egocentric Y ≡ 0 constant:
they are the radii around the nest position. On the way home they all con-
verge, and if by random fluctuations the animal switches over to a trajectory
in its neighbourhood it nevertheless is guided towards the nest by the beacon
condition Y = 0. But for outbound routes they diverge, and random errors
are not corrected on their own. It would even be better to follow a fixed
compass direction, because trajectories of the same direction are parallel to
each other, and randomly accumulated errors will not be enhanced during
the course. In the light of our model it seems natural to suggest that the
relative position of a feeding site is internally stored as another global vector
Gf = (Xf , Yf) which is updated simultaneously with (X, Y ). Depending on
whether the animal steers towards the feeder or home, either Yf = 0 with
Xf > 0 is the beacon condition, or Y = 0 with X > 0. To our knowledge
no experiments with obstacles on the way to a trained feeder have been per-
formed corresponding to those described in Wehner (2003) for homing paths
with obstacles (see Fig. 2B therein). If the animals are able to compen-
sate forced deviations on the path to the feeder in the same manner as on
paths leading home, this would indicate a similar internal processing for both
positions.
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Moreover, a better understanding of mechanisms by which global vector
information is combined or substituted with local information from land-
marks requires efficient mathematical models and simulations that are able
to reproduce experimental data. With our egocentric path information sys-
tem for the two relative cartesian coordinates we have presented a most
simple modelling tool that can help to evaluate and discriminate various hy-
potheses on orientation, random or systematic errors, and possible neural
representations.

Acknowledgements

This work was partly supported by Research Group Wissensformate of Bonn
University and Special Research Program SFB 611 of Deutsche Forschungs-
gemeinschaft. We thank G. Hoffmann for helpful comments on the manu-
script, the anonymous referees for many detailed suggestions to improve the
manuscript, and R. Wehner for introducing T.M. to Cataglyphis and includ-
ing him in his research project on path integration in desert ants.

References

Alt, W., 1990. Correlation analysis of two-dimensional locomotion paths.
In: Alt, W., Hoffmann, G. (Eds.), Biological Motion. Lecture Notes in
Biomathematics Vol 89. Springer, Berlin, Heidelberg and New York, pp.
154–168.

Alt, W., 1995. Elements of a systematic search in animal behavior and model
simulations. Bio Systems 34, 11–26.

Benhamou, S., 1996. No evidence for cognitive mapping in rats. Anim. Behav.
52, 201–212.

Benhamou, S., 1997. Path integration by swimming rats. Anim. Behav. 54,
321–327.

Benhamou, S., Sauve, P., Bovet, P., 1990. Spatial memory in large scale
movements: efficiency and limitation of the egocentric coding process. J.
Theor. Biol. 145, 1–12.
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Parastizopus armaticeps Peringuey (Coleoptera: Tenebrionidae). Disser-
tation. Bonn.

Bisch-Knaden, S., Wehner, R., 2003. Local vectors in desert ants: context-
dependent landmark learning during outbound and homebound runs. J.
Comp. Physiol. A 189, 181–187.

26



Bisetzky, A. R., 1957. Die Tänze der Bienen nach einem Fussweg zum Fut-
terplatz. Z. Vergl. Physiol. 40, 264–288.

Byers, J. A., 2001. Correlated random walk equations of animal dispersal
resolved by simulation. Ecology 82, 1680–1690.

Collett, M., Collett, T. S., Bisch, S., Wehner, R., 1998. Local and global
vectors in desert ant navigation. Nature 394, 269–272.

Collett, M., Collett, T. S., Chameron, S., Wehner, R., 2003. Do familiar
landmarks reset the global path integration of desert ants? J. Exp. Biol.
206, 877–882.

Collett, M., Collett, T. S., Wehner, R., 1999. Calibration of vector navigation
in desert ants. Curr. Biol. 9, 1031–1034.

Darwin, C., 1873. Origin of certain instincts. Nature 7, 417–418.

Dyer, F. C., Dickinson, J. A., 1994. Development of sun compensation by
honeybees: how partially experienced bees estimate the sun’s course. Proc.
Natl. Acad. Sci. 91, 4471–4474.

Eggers, A., Gewecke, M., 1993. The dorsal rim area of the compound eye and
polarization vision in the desert locust Schistocerca gregaria. In: Wiese, K.,
Gribakin, F. G., Popov, A. V., Renninger, G. (Eds.), Sensory systems of
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