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Abstract

What happens to the optimal interpretation of noisy data when there
exists more than one equally plausible interpretation of the data? In a
Bayesian model-learning framework the answer depends on the prior ex-
pectations of the dynamics of the model parameter that is to be inferred
from the data. Local time constraints on the priors are insufficient to
pick one interpretation over another. On the other hand, nonlocal time
constraints, induced by a1/f noise spectrum of the priors, is shown to
permit learning of a specific model parameter even when thereare in-
finitely many equally plausible interpretations of the data. This transition
is inferred by a remarkable mapping of the model estimation problem
to a dissipative physical system, allowing the use of powerful statisti-
cal mechanical methods to uncover the transition from indeterminate to
determinate model learning.

1 Introduction

The estimation of a model underlying the production of noisydata becomes highly non-
trivial when there exists more than one equally plausible model that could be responsible
for the output data. The viewing of ambiguous figures, such asthe Necker cube [1], is
a classical problem of this type in the field of visual psychology. Pitch perception when
hearing a number of different harmonics is another example of ambiguous perception [2].

Previous studies [3] have reduced the problem of optimal interpretation of an ambiguous
stimulus to the problem of estimating a single variable which may vary in timeα(t), given
a time sequence of noisy data. Enforcing a prior belief that the local dynamicsα(t) should
not vary too rapidly embodies the observer’s knowledge thatrapid variations inα(t) are
unlikely in the natural world or in a given experiment. Such aprior prevents overfitting the
model estimate to the data as it arrives. The statistically optimal interpretation of the data
was then found to consist ofα(t) hopping randomly from one possible interpretation to
another. The rate of random switching between interpretations was found to be controlled
not by the noise level (e.g. in the neural hardware), as previously thought, but rather by
the observer’s prior hypotheses. This hopping persists indefinitely despite the fact that
the probability distribution of the incoming data remains the same. In such cases it is
impossible to learn a specific model parameter.
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In this paper we introduce another prior over the dynamics ofα(t). We assume that fluc-
tuations inα(t) have a1/f spectrum, as observed ubiquitously in nature. Such a prior is
shown to induce nonlocal time constraints on the trajectories ofα(t) and, unlike the local
constraints, can result in specific model learning in the case of ambiguous models. The fact
that1/f priors can induce unambiguous model learning is the centralresult of this work.

The analyses of the long-time dynamics with nonlocal priorsis permitted by a surprising
and remarkable mapping to a dissipative quantum system. This mapping not only guides
our intuition of the optimal trajectories ofα(t) but also permits the usage of powerful
statistical mechanical techniques. In particular, the renormalization group (RG) can be
employed to uncover the conditions in which there is a transition from non-specific model
learning to specific model learning.

2 Formalism

Suppose that we are given a series ofN measurements{xt} at discrete timest. Then Bayes
rule gives us the conditional probability of{αt} giving rise to those data

P [{αt}|{xt}] =
P [{xt}|{αt}]P [{αt}]

P [{xt}]
, (1)

where the probability of making the observations{xi} is given by summing up all the
possible models that may give rise to them,

P ({xt}) =

∫

dαP [{xt}|{αt}]P [{αt}]. (2)

We further assume conditional independence of signals,

P [{xt}|{αt}] = P [x1x2...xN |{αt}] =

N
∏

t=1

P [xt|αt]. (3)

A natural step is then to consider how close our estimate of the modelα(t) lies to the true
underlying modelα(t), which we take to be stationaryα(t) = α. We can think of these
probability distributions as Boltzmann distributions in which some effective potential acts
to holdα close toᾱ; thus we envision an energy landscape in theα space with a minimum
at ᾱ.

A more interesting, and generalized, question arises when we consider the global properties
of the extended energy landscape. In particular there may beM > 1 equally plausible
interpretations consistent with the input data1 in which case there exist degenerate minima
atαm (m = 1, 2....M ),

P [xt|α1] = P [xt|α2] = ... = P [xt|αM ]. (4)

Therefore we may write Eq. (3) as

P [{xt}|{αt}] =

N
∏

t=1

(

M
∏

m=1

P [xt|αm]1/M

)

exp

[

1

M

M
∑

m=1

N
∑

t=1

ln
P [xt|αt]

P [xt|αm]

]

. (5)

On average, the term in square brackets is related to the Kullback-Leibler divergences be-
tween distributions conditional onα(t) and distributions conditional on the truēα. If the

1Of course it may be the case that some interpretations may be more plausible than others, result-
ing in a non uniform probability distribution over possiblemodels. In this paper we illustrate the case
where all interpretations are equally likely,P [αm] = 1/M .



time variation ofα is slow, we effectively collect many samples ofx beforeα changes, and
it makes sense to replace the sum over samples by its average:

lim
N→∞

M
∑

m=1

N
∑

t=1

ln
P [xt|αt]

P [xt|αm]
≈

1

τ0

M
∑

m=1

∫

dt

∫

dxP [x(t)|αm] ln
P [x(t)|α(t)]

P [x|αm]
,

≡ −
1

τ0

M
∑

m=1

∫

dtDKL[αm||α(t)]. (6)

whereτ0 is the average time between observations, and we take the continuum limit.

2.1 Priors

We need to have some prior hypotheses about howα(t) can vary in time, serving as our
prior probability distributionP [α(t)]. We introduce two different types of priors character-
ized by whether they constrain the local or nonlocal time dynamics,

P [α(t)] = Plocal[α(t)]Pnonlocal[α(t)]. (7)

To summarize our prior expectation that the local dynamics of α(t) vary slowly, we assume
that the time derivative ofα(t) is chosen independently at each instant of time from a
Gaussian distribution,

Plocal[α(t)] ∝ exp

[

−
1

4D

∫

dt

(

∂α

∂t

)2
]

. (8)

Note that this distribution corresponds to random walk witheffective diffusion constantD.

Motivated by the ubiquitous occurrence of1/f fluctuations in nature we chose to encapsu-
late the nonlocal dynamics by a Gaussian distribution with a1/f power spectrum of noise,
conveniently expressed in Fourier coordinatesω as

Pnonlocal[α(t)] ∝ exp

[

−
1

2

∫

dω

2π

|α(ω)|2

S(ω)

]

, (9)

where the spectral noise function takes the form

S(ω) =
1

η|ω|
. (10)

Note that the spectrum must be even inω since for any stationary processS(ω) = S(−ω).
The parameterη determines the strength ofa priori belief in nonlocal dynamics, or as
we will see later, it can be equivalently viewed as a frictional constant determining the
dissipation of the time trajectories ofα(t). In the time-domain Eq. (9) becomes

Pnonlocal[α(t)] ∝ exp

[

−
η

4π

∫

dtdt′
(

α(t)− α(t′)

t− t′

)2
]

. (11)

Combining Eq. (8) and Eq. (11) we then obtain the total prior expectation of the probability
distribution over the time-dependence of the model parameterα(t)

P [α(t)] ∝ exp

[

−
1

4D

∫

dt

(

∂α

∂t

)2

−
η

4π

∫

dtdt′
(

α(t)− α(t′)

t− t′

)2
]

. (12)

Taken together, the local and non-local terms describe fluctuations inα which are1/f up
to a cutoff frequency,ωc ∼ Dη. Returning to the Bayesian conditional probability Eq. (1)
we then obtain a path-integral expression

P [α(t)|{xi}] ∝ exp(−S[α(t)]), (13)



where the actionS[α(t)] is given by

S[α(t)] =

∫

dt

[

1

4D

(

∂α

∂t

)2

+ η

∫

dt′

4π

(

α(t) − α(t′)

t− t′

)2

+ Veff [α(t)]

]

, (14)

Veff [α(t)] =
1

τ0M

M
∑

m=1

DKL[αm||α(t)]. (15)

This is equivalent to the imaginary time path-integral for aquantum mechanical particle [4]
of mass1/2D , with coordinates given byα(t), moving in an effective potentialVeff [α(t)]
and subject to (linear) frictional forces with a damping constantη. This mapping provides
an extremely useful guide to our intuition for the probable trajectories ofα(t). Just as in the
analyses of particle dynamics in dissipative quantum mechanics [4] we anticipate that the
time-course ofα(t) may exhibit qualitatively different types of behavior depending on the
strength of the non-local terms. In addition, the equivalence to a physical system permits
exploitation of powerful techniques developed in the studyof quantum mechanical systems
with infinite degrees of freedom.

In the following we consider the cases ofm = 1 andm = 2 and use the RG transformations
to consider localization-delocalization transitions.

2.2 M=1 : One true interpretation of data

Now if α(t) differs fromα by a small∆α(t) we can Taylor expand the Kullback-Leibler
divergence to give a quadratic distance measure

DKL(α||α) =
1

2
F [α(t)]∆α(t)2 +O(∆α3), (16)

where the metric is the Fisher information

F [α(t)] =

∫

dx
1

P [x|α(t)]

(

∂P [x|α(t)]

∂α(t)

)2

. (17)

Thus, close to the true parameterα the potential energy term in Eq. (14) is simply a har-
monic oscillator with stiffness given by the Fisher information. Guided by the mapping to a
dissipative quantum mechanical system we expect that if theinitial distribution ofα already
happens to be closely centered around the correct value thenthe most likely trajectory will
be simply to move closer to the minima of the potential energyatα1.

The important point to note is that had we chosen just the local constraints on our priors
Eq. (8) then the trajectory ofα(t) would persistently fluctuate aroundα1, representing a
trade-off between avoiding overfitting the data and inertiaof our estimate. In the quan-
tum mechanical picture this corresponds to the zero point fluctuations around the minima.
Adding the dissipative term reduces the fluctuations aroundα1 by an amount monotoni-
cally dependent onη, thus improving on the optimal estimate.

A RG treatment of the single-well problem, within the harmonic approximation, renor-
malizes the Fisher information such that the curvature of the potential well increases for
all values of theη, and thus the fixed point of the dynamics is simply the convergence
of α(t) to reduced fluctuations around the true parameterα1. We explicitly carry out the
RG calculation in the more interesting case where we have twoglobal minima in the next
section.



2.3 M=2 : Two equally possible interpretations of the data

In the case of two equally viable interpretations of the data, the potential energy term
becomes that of a double-well potential with degenerate minima atα1 andα2 and energy
barrierh

h =
1

2τ0
(DKL(α1||(α1 + α2)/2) +DKL(α2||α1 + α2)/2)) (18)
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Figure 1: Potential energy landscape forα where there exist two equally valid interpreta-
tions. Eq. (19)

Without any dissipative dynamics, the optimal estimate ofα(t) will switch between the
two minima, representing instanton trajectories of a quantum particle tunnelling through
the energy barrier backwards and forwards [3]. In contrast,it is well known that, at least in
some regimes, the problem with dissipation has a phase transition to a truly localized state.
Previous work has demonstrated such a dynamical phase transition in the strong-coupling
limit (i.e. large barrier height limit) using semi-classical approximations for the dynamics
[4,5,6], and in this section we will show that a perturbativeRG treatment yields similar
results in the opposite weak-coupling limit.

For the sake of simplicity we employ the following simple quartic potential (see Fig.1),
although the results will be independent of its exact form,

V (α) =
h

α4
1

(

α2 − α2

1

)2
. (19)

Theα coordinates have been shifted such thatα1 = −α2, and the heighth of the energy
barrier located atα = 0 sets the overall energy scale. It is useful to write the effective
action of Eq. (14) in dimensionless parameters

a =
α

α1

, b = ηα2

1, c =
h

Λ
, (20)

whereΛ = D/α2
1 is the energy/frequency scale2

S =
1

2

∫

dω

2π

(

1

2Λ
ω2 + b|ω|

)

|a(ω)|2 + cΛ

∫

dt V ′(a), (21)

V ′(a) = (a2 − 1)2. (22)

2The constant of proportionality between energy and frequency is set to 1, akin to the common
physics computation setting ofh̄ = 1.



By power counting in the first integral the dissipative term,at low frequencies, dominates
over the kinetic energy term. In the language of RG, the kinetic energy term is an irrelevant
operator and can thus be ignored if we now focus our attentionto frequencies below some
cut-off λ. To determine the RG flow of the dimensionless coupling parameters the high-
frequency components are integrated out fromω = λ−dλ toω = λ to give a new effective
actionS̃ over the low frequency modesω < λ. To accomplish this the functionα(ω) is
split

a(ω) = a<(ω)θ(|ω| < λ− dλ) + a>(ω)θ(λ− dλ < |ω| < λ), (23)

and the new action is obtained by integrating overa>(ω),

Z =

∫

Da exp[−S(a)],

=

∫ ∫

Da<Da> exp[−S(a< + a>)],

=

∫

Da< exp[−S̃(a<)]. (24)

Therefore,

S̃(a<) =
b

2

∫ λ−dλ

0

dω

2π
|ω||a<(ω)|

2 + ln

〈

exp

[

cΛ

∫

dtV ′(a< + α>)

]〉

a>

, (25)

where the averaging is defined by

〈A〉a>
∝

∫

Da> exp

{

−
b

2

∫ Λ

Λ−dΛ

dω

2π
|ω||a>(ω)|

2

}

A. (26)

In the weak-coupling limit, we may expand the exponential term in Eq. (25) before per-
forming the averaging,

〈

exp[cΛ

∫

dtV ′(a< + a>)]

〉

a>

=

〈

1 + cΛ

∫

dtV ′(a< + a>) + ...

〉

a>

. (27)

Terminating the expansion to first order in the potential represents a one-loop calculation
in field theories.

Making use of
〈

a2>(t)
〉

a>

=

∫ λ

λ−dλ

dω

π

1

b|ω|
≈

1

πb

dλ

λ
, (28)

we find that the potential term renormalizes as

(cΛ(a2 − 1)2)λ ⇒ (cΛ(a2 − 1)2)λ−dλ ≈ (cΛ)λ

[

(a2< − 1)2 + (3a2< − 1)
2

πb

dλ

λ

]

, (29)

where we have ignored terms including higher powers ofdλ/λ. To recast the new lower-
frequency action into the same form as the original action the dimensionless coupling pa-
rameters must be renormalised. In particular, we observe that the dimensionless barrier
heightc can either grow or shrink depending on the value of the dimensionless dissipation
b. Note that the coordinates must also be rescaled (also knownas wavefunction renor-
malization) for the potential in Eq. (29) to maintain the same quartic form as in Eq. (22),
thereby inducing a rescaling ofb. We concentrate here on the renormalized potential cou-
pling term and find that, up to a constant,

cλ−dλ = cλ

[

1 +
dλ

λ

(

1−
6

πb

)]

, (30)



giving then the following differential RG flow equation

dc

d lnλ
=

(

b∗

b
− 1

)

c. (31)

As the (dimensionless) barrier heightc renormalizes towards lower frequencies we observe
two types of behavior depending on whether the parameterb is greater or smaller than the
critical valueb∗ = 6/π (the actual numerical value may well be slightly altered by going
to higher orders in the perturbative expansion, but the important point to note that it is non-
zero and thus gives rise to distinct dynamical phases). Forb > b∗ the barrier height grows
without bounds and thus effectively trapsα(t) in one of the two minima, representing a
localized phase. This localization can be brought about by increasing the magnitude ofη,
the numerical prefactor of our dissipative nonlocal priors, and/or increasingα1 the distance
between the two possible interpretations of the data. On theother hand, forb < b∗ the
potential becomes ineffective in localizingα, and thusα freely tunnels between the two
wells, representing indeterminancy of the correct true model parameter.

It is interesting to note that a flow equation, similar to Eq. (31), has been reported for the
opposite limit (strong-coupling) using the instanton method[5,6]. Arguably what we have
really shown is that even if one starts with weak coupling, sothat it should be ”easy” to
jump from one interpretation to another, forb > b∗ we will flow to strong-coupling, at
which point known results about localization take over.

c

0

8

*

local

nonlocal b b

Figure 2: Schematic RG flow of the potential energy coupling parameter forM ≥ 2. Note
that the flow-lines are not expected to be strictly vertical due to wavefunction renormaliza-
tion.

The qualitative picture does not change when there are more than two possible model in-
terpretations,M > 2. In fact, the case ofM = ∞ has been studied [7] where the potential
energy landscape is taken to be sinusoidal, and it has been demonstrated that there again
exists a critical valueb∗ which separates a localized phase from a nonlocalized phase. The
flow of the potential energy coupling constantc is shown in Fig.2 which is expected to be
qualitatively correct across the whole range2 ≤ M ≤ ∞.

3 Discussion

In summary, the optimal model estimate in the response of ambiguous signals always re-
sults in random perceptual switching when the priors only constrain the local dynamics.
We have shown that when we allow the possibility of1/f noise in our priors then a specific
model is learnt amongst the many possible models.

The connection between estimation theory and statistical mechanics is well known. One
of the key results in statistical mechanics is that local interactions in one dimension can



never lead to a phase transition. Thus if we are interested in, for example, learning a
single parameter by making repeated observations, then there can be no phase transition
to certainty about the value of this parameter as long as our prior hypotheses about its
dynamics are equivalent to local models in statistical mechanics. Markov models, Gaussian
processes with rational spectra, and other common priors all fall in this local class.

The common occurrence of1/f fluctuations in nature motivates the analyses of estimation
theory with such priors. Crucially,1/f spectra do not correspond to local models. In fact
they correspond exactly to the addition of friction to the path integral describing a quantum
mechanical particle, a problem of general interest in condensed matter physics and more
recently in quantum computing. Here we note one important consequence of these priors,
namely that we can process data in a model which admits the possibility of time variation
for the underlying parameter, but nonetheless find that our best estimate of this parameter
is localized for all time to one of many equally plausible alternatives. It seems that1/f
priors may provide a way to understand the emergence of certainty more generally as a
phase transition.
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