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Abstract  
 
The Z64-algebra of the genetic code and DNA sequences of length N was recently stated. In 
order to beat the limits of this structure −such as the impossibility of non-coding region 
analysis in genomes and the impossibility of the insertions and deletions analysis (indel 
mutations)− we have develop a cycle group structure over the of extended base triplets of 
DNA X1X2X3, Xi∈{O, A, C, G, U}, where the letter O denote the base omission (deletion) 
in the codon. The obtained group is isomorphic to the abelian 5-group Z125 of integer 
module 125. Next, it is defined the abelian finite group S over a set of DNA alignment 
sequences of length N. The group S could be represented as the direct sum of homocyclic 
groups: 2-group and 5-group. In particular, DNA subsequences without indel mutation 
could be considered building block of genes represented by homocyclic 2-groups 
(described in the previous Z64-algebra). While those DNA subsequences affected by indel 
mutations are described by means of homocyclic 5-groups. This representation suggests 
identify genome block structures by way of a regular grammar capable of recognize it.   In 
addition, this novel structure allows us a general analysis of the mutational pathways follow 
by genes and isofunctional genome regions by means of the automorphism group on S.  
 

1. Introduction 
 
The quantitative relationships between codons and between genes given in the molecular 

evolution process are an amazing challenge to mathematical biology. Regularities in the 
standard genetic code lead us to think this code has evolved in order to minimize the 
consequence of errors during transcription and translation (Epstein, 1966; Crick, 1968; 
Lewin, 2004). So, many attempts have been made to introduce a formal characterization of 
the genetic code (Jungck, 1978; Siemion et al., 1995; Jiménez-Montaño, 1999; Gillis, 
2001). However, the most recent models lead us to go beyond the genetic code limits to 
deal with the quantitative relationship between DNA genomic sequences (Sanchez et al., 
2004, 2005a, 2005c). 

 
Recently was pointed out the Z64-algebra of the genetic code (Cg) and the N-dimensional 

DNA sequences space S defined on the set of all 64N DNA sequences with N codons 
(Sanchez et al., 2005c). The sum operation defined on this set is a manner to consecutively 
obtain all codons from the codon AAC (UUG) in such a way that the genetic code will 
represent a non-dimensional code scale of amino acids interaction energy in proteins. It was 
verified that most frequent mutation can be described by means of automorphisdms f: 
(Z64)N→(Z64)N over S. However, this model is limited to coding regions, while it is well 
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known that in eukaryotes only a minute fraction of the genome −about 3%− called open 
reading frame (ORF) codes for proteins (Lewin, 2004). In addition, since non-coding DNA 
sequences can have a base pairs number not multiple of three, complete chromosomes and 
genomes can not be described by means of the Z64-algebra Cg. Besides this, insertions and 
deletion mutations (indel mutations) in DNA sequences can not also be described by this 
algebra. 

 
In order to beat these limitations, we propose an extension of the group (Cg, +) that we 

shall call extended group of the genetic code and next, we will show that all possible DNA 
sequence alignments with length N can be described by way of finite abelian groups which 
can decomposed into the direct sum of homocyclic 2-groups and 5-groups. A homocyclic 
group is a direct sum of cyclic groups of the same order. Any finite abelian group can be 
decomposed into a direct sum of homocyclic p-groups.  
 

2. Extended genetic code group 
 
 A description of the genetic code abelian finite group (Cg, +) can be found in (Sanchez  

et al., 2005c). The extension of the codon set is achieved extending the source alphabet of 
the standard genetic code: {A, C, G, U}. To describe indel mutations in codons we have 
added the letter O to the set of the DNA bases, such that, for all extended triplet X1X2X3, 
Xi∈{O, A, C, G, U}.  In a similar way to (Sanchez  et al., 2005c) we can obtain the ordered 
set of extended triplets, presented in Table 1, and deduce a sum algorithm for extended 
triplets. The sum operation between two extended triplets XYZ and X’Y’Z’ is obtained by 
means of base sum, presented in Table 2, which is also deduced from Table 1 (as in 
Sanchez  et al., 2005c). The sum operation of extended triplets runs from the less biological 
significant base position −the third triplet position: Z and Z´− to the most important base 
position −located in the second position:  Y and Y´− by means of the algorithm: 
 

i) Letters in the third positions are added according to the sum table (Table 2). 

ii) If the resultant letter of the sum operation is previous (in the order) to the added 
letters −the orders in the set of letters {O, A, C, G, U}−, then the new value is 
written and the base A is added to the next position. 

iii) The other letters are added according to the sum table, step 2, going from the first 
base to the second base. 

  
We shall call the group defined in Table 2, the extended alphabet group of the four bases 

(Gb), and the group defined over the set of extended triplets, the extended genetic code 
group (Ce, +). Let us sum, for instance, the extended triplets OGC y UCG: 
 

C + G = O, the third letters are added and the base A is added to the next position 
because letter O  precedes bases C and G in the set of ordered extended bases {O, A, C, G, 
U}. 

O + U + A = U + A = O, the first letters and the base A obtained in the first step are 
added. Again, base A is added to the next position. 

G+C+A=O+A= A, the second bases are added to base A obtained in the second step.  
Finally, we have:  
 

OGC + UCG =OAO 
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Since all finite cyclic groups with the same number of elements are isomorphic, then, 
group (Ce, +) is isomorphic to the group Z125 of integers module 125, (Z125, +). So, for 
instance, we can compute: 

AGC ↔   82 AGC ↔     82 CCC ↔ 62 
+UGU  ↔ +99 +AUA  ↔ +106 + AAU  ↔ 34 

ACA  ↔   56 mod 125 CCG ↔     63 mod 125 UGA ↔ 96 mod 125
 
Due to any abelian group is essentially a module over some ring, as in Sanchez et al. 

2005c, we can say that the previous representation is the coordinate representation of the 
extended triplets from Z125-Module (Ce, +) over the ring Z125. 

 
3. Abelian finite group of DNA sequences 

 
Now, we can analyze the set of alignment sequences of length N. In the genomic DNA 

sequences are found open reading frames (ORF) that are building block of genes (Lewin, 
2004). If we analyzed the multi-alignment of these sequences we can find subregions where 
there are not gaps introduced and we only found substitution mutations (see Fig. 1). These 
building blocks can correspond to complete exons or subregions, and can be described by 
means of the group (Cg, +). While, those genome regions where gaps appear −as a result of 
indel mutations− can be described by means of the monogen group (Ce, +). This is 
essentially an application of the fundamental theorem of abelian finite groups (Frobenius 
and Stickelberger, 1879; Dubreil and Dubreil-Jacotin,1963). By this theorem every finite 
abelian group G is isomorphic to a direct product of cyclic groups of prime power order. In 
particular, the theorem state a conical decomposition for every finite abelian group G, i.e. 
the group G is isomorphic to a direct product of cyclic groups  

  knnn ZZZ ×⋅⋅⋅××
21   

such that ni | ni-1 for i = 2, 3, . . . , k. 
 
In the present case, as is showed in Fig 1, the group defined over the sequence space S 

−formed by the set of all qp nnnmmm ++++++ ...... 2121 12564 possible aligned sequences of length N 
(N = n1+…+np+m1+…+mq)− is an heterocyclic group. This group split into a directed sum 
of homocyclic p-groups each one of them split into the direct sum of cyclic p-groups 
(monogens) with same order. Notice that for each fixed length N we can build manifold 
heterocyclic groups Si, each one of them can have different decomposition into p-groups. 
So, we can characterize each group Si by means of their corresponding canonical 
decomposition into p-groups. That is, two sequences S1 and S2 could split into different 
homocyclic p-groups and, however, be isomorphic between them because have the same 
canonical decomposition. Biologically, such description is in correspondence with the fact 
that the new genetic information is created, simply, by way of reorganization of the genetic 
material in the chromosomes of living organisms (Lewin, 2004).  

 
The automorphism group Aut(S) of the abelian group (S, +) is formed by set of 

invertible elements of the endomorphism ring End(S) of group (S, +). Since each finite 
abelian group G split into the direct sum of primary groups, the problem of the group 
structure of Aut(G) is reduced to the problem of the group structure Aut(Gp), where Gp 
denote the Sylow p-subgroups of G, for all prime numbers divisor of ⎪G⎪.  
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Tabla 1. The set of ordered extended triplets. The bijection between the set of extended 
triplets and the set Z125  is showed. 

No O No A No C No G No U
0 OOO 25 OAO 50 OCO 75 OGO 100 OUO O
1 OOA 26 OAA 51 OCA 76 OGA 101 OUA A
2 OOC 27 OAC 52 OCC 77 OGC 102 OUC C
3 OOG 28 OAG 53 OCG 78 OGG 103 OUG G
4 OOU 29 OAU 54 OCU 79 OGU 104 OUU U
5 AOO 30 AAO 55 ACO 80 AGO 105 AUO O
6 AOA 31 AAA 56 ACA 81 AGA 106 AUA A
7 AOC 32 AAC 57 ACC 82 AGC 107 AUC C
8 AOG 33 AAG 58 ACG 83 AGG 108 AUG G
9 AOU 34 AAU 59 ACU 84 AGU 109 AUU U
10 COO 35 CAO 60 CCO 85 CGO 110 CUO O
11 COA 36 CAA 61 CCA 86 CGA 111 CUA A
12 COC 37 CAC 62 CCC 87 CGC 112 CUC C
13 COG 38 CAG 63 CCG 88 CGG 113 CUG G
14 COU 39 CAU 64 CCU 89 CGU 114 CUU U
15 GOO 40 GAO 65 GCO 90 GGO 115 GUO O
16 GOA 41 GAA 66 GCA 91 GGA 116 GUA A
17 GOC 42 GAC 67 GCC 92 GGC 117 GUC C
18 GOG 43 GAG 68 GCG 93 GGG 118 GUG G
19 GOU 44 GAU 69 GCU 94 GGU 119 GUU U
20 UOO 45 UAO 70 UCO 95 UGO 120 UUO O
21 UOA 46 UAA 71 UCA 96 UGA 121 UUA A
22 UOC 47 UAC 72 UCC 97 UGC 122 UUC C
23 UOG 48 UAG 73 UCG 98 UGG 123 UUG G
24 UOU 49 UAU 74 UCU 99 UGU 124 UUU U

U

O

A

C

G

  
 
Table 2. Sum table of the extended alphabet of four DNA bases {O, A, C, G, U}. 
+ O A C G U 
O O A C G U 
A A C G U O 
C C G U O A 
G G U O A C 
U U O A C G 

 
 

 
Figura 1. Building blocks from multiple sequence alignment of DNA sequences. 

Building block detection can achieved by means of the algorithm of multiple sequence 
alignments (Durbin et al., 1998; Baldi et al, 2001). Sequences, in this example, belong to an 
abelian group that split into the direct sum of 2-groups and 5-groups: 

2
5

4
2

2
5

5
2

4
5 )()()()()( 36363 ZZZZZS ⊕⊕⊕⊕=  

 
Following to Shoda (1928), Z.M. Kishkina showed that (Kurosch, 1955) if G split into 

the direct sum G = G1 ⊕ G2 ⊕…⊕ Gs, then the endomorphism ring is isomorphic to the ring 
of all matrixes (Aij), where Aij ∈ Hom(Gi,Gj), with usual sum and product of matrixes. In 
particular, the endomorphism that transform the DNA sequence α into β (α, β∈S) is 
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represented by a matrix whose elements in the principal diagonal are matrixes Aii∈End(Gi) 
(or Aii∈Aut(Gi)) and out of the principal diagonal are null matrixes. In biological terms, 
mutations in genomic sequences will correspond to automorphism when Aii∈Aut(Gi), for 
all i in the representing matrix, and this will happen when det(Aii) T 0 mod pi (since Gi is a 
pi-group (Shoda, 1928)). As was pointed out in (Sanchez et al., 2005c) this fact will be 
possible when all mutant DNA subsequences βi keep the order of the corresponding 
sequences of the will type αi (αi, βi ∈ Gi). A natural gene always satisfies this algebraic 
condition. 

 
The last representation as a direct sum of powers of Z64 and Z125 suggests that we would 

associate to building block structure of genomes a regular grammar. This grammar would 
recognize the expression of the form: 

 
mZnZmZnZmZnZS pp )()(...)()()()( 63

2
6

2
3

1
6

1
3 252525 ⊕⊕⊕⊕⊕⊕=  

with n1 and mp more than or equal to cero, and ni and  mi  strictly positives. It would be 
enough consider a regular grammar like this: 

 
S →x X;  S →y Y;  X →x X;  Y →y Y;  X →y Y; Y →x X;  X →λ;  Y →λ  

Where S is the start state, X and Y are terminal state, which are acceptation states in the 
corresponding finite automata (λ is the chain end), “x” and “y” represent, in this case, 
“x=Z125” y “y=Z64”. It is well know that the regular grammar have important applications in 
bioinformatics in sequence analyzes (Baldi et al., 2001 and Durbin et al., 1998). This 
analysis will not exclude from this approach. 

    
4. Conclusions 

 
Limitations of the Z64-Module algebraic structure of DNA sequences lead us to define 

the extended triplet set of the genetic code Ce using an extension of the four letter alphabet 
of DNA molecule {O, A, C, G, U}. In the extended triplet set was defined the group (Ce, +) 
isomorphic to the cyclic group Z125. As a result, given an iso-functional genomic DNA 
region, the sequence alignment of the set of all iso-functional genomic DNA sequences, can 
be represented as a finite group. This group split into the direct sum of 2-groups and 5-
groups: 

mZnZmZnZmZnZS pp )()(...)()()()( 63
2

6
2

3
1

6
1

3 252525
⊕⊕⊕⊕⊕⊕=

 Such decomposition allows us characterize the more frequent mutational pathway follow 
by DNA sequences in the set of all pp nnnmmm ++++++ ...... 2121 12564 possible aligned sequences 
of length N. In particular, mutational pathway can be represented by means of 
automorphism where the elements of the representing matrix A in the principal diagonal are 
matrixes Aii∈Aut(Gi) and out of the principal diagonal are null matrixes. 

 
In addition, since for any length we can find manifold heterocyclic groups Si, the last 

representation suggests the possible recognition of block structures in genomes by means of 
a regular grammar. 
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