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Non-meanfield deterministic limits in chemical reaction kinetics far from equilibrium
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A general mechanism is proposed by which small intrinsic fluctuations in a system far from
equilibrium can result in nearly deterministic dynamical behaviors which are markedly distinct
from those realized in the meanfield limit. The mechanism is demonstrated for the kinetic Monte-
Carlo version of the Schnakenberg reaction where we identified a scaling limit in which the global
deterministic bifurcation picture is fundamentally altered by fluctuations. Numerical simulations of
the model are found to be in quantitative agreement with theoretical predictions.
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On a mesoscopic level, large-scale dynamical systems
are always subject to fluctuations, either due to the per-
turbations coming from the random environment (extrin-
sic noise), or due to the fundamental randomness of the
underlying physical processes (intrinsic noise) [1, 2]. Of-
ten, these fluctuations cannot be neglected. For instance,
small noise can alter the system behavior in essential
ways by producing activated processes such as rare bar-
rier crossing events [2–4].

Perhaps even more surprisingly, rare events coupled
to slow deterministic dynamics may result in behaviors
that are dramatically different from the dynamics in the
absence of noise and yet remain essentially deterministic
[5]. By now a classical example of this phenomenon is
stochastic resonance, whereby under appropriate condi-
tions the noise can induce an essentially all-or-none re-
sponse to a driving frequency [6]. Another example is the
recently discovered phenomenon of self-induced stochas-
tic resonance (SISR) in which the external noise plays
a constructive role in producing new non-meanfield be-
haviors [7–9]. In SISR the interplay between the slow
Arrhenius time scale [2–4] of rare events and the slow
deterministic time scale is achieved by tuning appropri-
ately the amplitude of the external noise (making both
these time scales long ensures the deterministic character
of the observed behavior).

On the other hand, one might ask whether the same
type of interplay is possible in systems in which the fluc-
tuations are generated intrinsically. One important class
of such systems are kinetic Monte Carlo (KMC) schemes
[10, 11] for chemical and biochemical reactions [12–15],
in which randomness is due to the underlying stochastic
jump processes [2]. In KMC, the level of noise is not
a free parameter, but is determined by all the processes
combined. Therefore, it is not clear a priori that the
right balance can in fact be achieved.

In this Letter, we show that the non-trivial interplay
between rare events and slow dynamics is indeed possible
in systems far from equilibrium with intrinsic random-
ness such as KMC. We do so by identifying distinguished
limits in which the dynamics of the system becomes com-

pletely deterministic and at the same time remains dis-
tinct from what is obtained in the meanfield limit. The
mechanism is first explained by means of a general model,
and then demonstrated to be feasible in a specific exam-
ple of an autocatalytic reaction KMC scheme.
Our general model is a “drift-or-jump” dynamical sys-

tem whose state at any moment is described by a vec-
tor y ∈ R

m. During an infinitesimal time interval dt
the system will move by dy = gα(y)dt to a new loca-
tion y + dy, or jump instantaneously to a new position
p(y) ∈ R

m with probability kε(y)dt. Here gα(y) is a given
vector field, kε(y) is a jump rate, and p(y) is a mapping
which, for simplicity, we will assume to be one-to-one.
The Chapman-Kolmogorov equation for the probability
density ρ(y, t) of this Markov process is [2]

∂

∂t
ρ(y, t) = − ∂

∂y
(gα(y)ρ(y, t))

− kε(y)ρ(y, t) + kε(p
−1(y))ρ(p−1(y), t).

(1)

In the following, we are interested in a particular situa-
tion in which the drift is “slow” and the jumps are “rare”,
quantified by two small dimensionless parameters, α and
ε, respectively. More precisely, we assume that

gα(y) = αg(y), kε(y) = ν(y) exp{−ε−1V (y)}, (2)

i.e. α characterizes the slow time scale of the drift gen-
erated by gα relative to some reference O(1) time scale,
and ε is the intensity of the jumps. Importantly, we
assumed that the rate kε(y) is in Arrhenius form, with
V (y) playing the role of a “barrier height” to be crossed
in the event of a jump and ν(y) being a dimensional rate
prefactor assumed to be O(1) on the reference time scale.
If we let ε → 0 in Eq. (1) with all other parameters

fixed, then the last two terms in Eq. (1) disappear, and
the limiting dynamics reduces to the deterministic mo-
tion ẏ = αg(y), the meanfield limit. However, as we show
now, more interesting behaviors occur if we let ε → 0
and α → 0 simultaneously on some specific sequence
and make some extra assumptions. For instance, suppose
that (i) the map p(y) satisfies ∀y ∈ R

m: V (p(y)) > V (y)
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(i.e. y always jumps to a state where the jump rate is
smaller), and (ii) ∀y ∈ R

m: ∇V (y) · g(y) < 0 (i.e. the
deterministic drift drives the system toward regions of
higher jump rate). Rescale time and introduce β as

τ = αt, β = ε lnα−1, (3)

and observe that in Eq. (1) written in the new time scale
the jump rate is k(y) ≡ α−1kε(y) = ν(y) exp{ε−1(β −
V (y)}. Therefore, if we let α, ε → 0 in a way that β =
O(1) is kept fixed, then

k(y) →
{

0, y ∈ Ωβ ,

∞, y 6∈ Ω̄β ,
(4)

where Ωβ ⊂ R
m is the region where V (y) > β. So the

following will happen: Supposing that the system starts
from y ∈ Ωβ, it will drift deterministically toward the
boundary of this region, ∂Ωβ , where V (y) = β. Once it
reaches ∂Ωβ, an instantaneous jump will occur to a new
location p(y) ∈ Ωβ by assumption above, and the process
will repeat itself indefinitely. The resulting dynamics in
this limit is deterministic (since both the drift and the
jump outcome are prescribed), but it is strongly non-
meanfield, since it is very different from the solution of
dy/dτ = g(y) (see also [7–9]). We also note that for small
but finite α, ε this dynamics should be augmented by a
boundary layer analysis of Eq. (1) near ∂Ωβ.
In the model above we postulated Eq. (1) and made

some specific assumptions about the terms in this equa-
tion. Next we show that this equation can in fact be
derived in a particular example in which it is not a priori

obvious. We take the KMC scheme for the Schnakenberg
reaction [16]:

S1
k1−→ X,

X
k2−→ Products,

2X + Y
k3−→ 3X,

S2
k4−→ Y,

(5)

which is a classical autocatalytic reaction scheme exhibit-
ing limit cycle oscillations and capturing a number of es-
sential non-equilibrium features of more realistic chemi-
cal and biochemical reactions (see, e.g., [17]).
In the KMC version of the Schnakenberg reaction the

state of the system at any time is given by the pair (X,Y )
of integers corresponding to the numbers of molecules of
the respective species. To identify the fast/slow dynam-
ics, we first introduce the rescaling (we absorb S1 and S2

into the rate constants)

x = k−1
1 X, y = (k3k

2
1/k4)Y (6)

and the dimensionless quantities

α = k21k3/k
3
2, ε = k2/k1, A = k4/k1. (7)
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FIG. 1: Phase plane trajectories for Eqs. (9) with A = 2 and
α = 10−3. The limit cycle is indicated with a solid loop.

After rescaling, the Chapman-Kolmogorov equation for
the probability density function ρ(x, y, t), where (x, y) ∈
εZ+ × (εα/A)Z+, of this Markov process is

∂ρ(x, y, t)

∂t
= ε−1[ρ(x− ε, y, t)− ρ(x, y, t)

+(x+ ε)ρ(x+ ε, y, t)− xρ(x, y, t)

+A(x− ε)(x− 2ε)(y + εα/A)ρ(x− ε, y + εα/A, t) (8)

−Ax(x − ε)yρ(x, y, t)

+Aρ(x, y − εα/A, t)−Aρ(x, y, t)].

Taking the limit ε → 0 in Eq. (8) with all other parame-
ters fixed, we obtain the deterministic process described
by the mass action law (the meanfield limit):

{

ẋ = 1− x+Ax2y,

ẏ = α(1 − x2y),
(9)

where now we measure time in the units of k−1
2 . From

this one can see that the constant α measures the time
scale separation ratio between x and y, and the constant
A controls the location of the unique fixed point

x0 = 1 +A, y0 = (1 + A)−2. (10)

For α small enough Eqs. (9) exhibit a limit cycle when
A > 1, i.e. when the fixed point (x0, y0) lies on the
unstable branch S+, where x = x+(y),

x±(y) = (1±
√

1− 4Ay)/(2Ay), (11)

of the x-nullcline (Fig. 1). In contrast, there is no limit
cycle when A < 1. In this case the fixed point lies on the
stable branch S−, where x = x−(y), of the nullcline and
this fixed point is stable and globally attracting. During
the slow motion, x remains close to x−(y), and so to
leading order in α ≪ 1, y satisfies ẏ = αg(y) with

g(y) = 1− x2
−(y)y.

Now we turn to the analysis of the model for α, ε ≪ 1
with β = O(1), following the general discussion earlier
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FIG. 2: Results of the KMC simulation of Eq. (5), with k1 = 5, k2 = 1, k3 = 4 × 10−6, k4 = 2.5. In (a), we plot a sample
trajectory in (X,Y )-space in black. Over this we have plotted in gray the running average over 1000 steps of the simulation,
to show the typical size of the fluctuation (the fluctuations in the raw trajectory are exaggerated by rare large deviations). In
(b), we plot X and Y versus time.

and show that a non-meanfield deterministic behavior
emerges in this case. To obtain the transition rate kε(y),
we need to consider the escapes from the vicinity of S−

with y frozen. Setting α = 0 in Eq. (8), one sees that
this amounts to studying a one-dimensional jump process
in x with right and left jump rates:

λ+
ε (x) = 1 +Ax(x − ε)y, λ−

ε (x) = x. (12)

For ε ≪ 1 the trajectory needs to reach the vicinity of
S+ in order to escape the basin of attraction of S−. The
corresponding rate of this escape event gives the kε(y)
to use in the equivalent of Eq. (1), and it can be deter-
mined by generalizing the classical analysis of Kramers
[2] for the one-dimensional jump process with rates from
Eq. (12) [18]. This gives an expression for kε(y) which is
in the form of Eq. (2) where (see also [19])

V (y) =

∫ x+(y)

x−(y)

ln

(

λ−
0 (x)

λ+
0 (x)

)

dx (13)

and

ν(y) =
2Ay

√
1− 4Ay

π(1 +
√
1− 4Ay )2

. (14)

The function V (y) in Eq. (13) can be easily computed
in closed form. In particular, V (y) is a monotonically
decreasing function of y for fixed A. It follows that, given
any β > βc(A) = V (y0), we have β = V (y⋆) for some
y⋆ = y⋆(β,A) with 0 < y⋆ < y0. As a result, in the
limit α, ε → 0 with β > βc(A) fixed, the trajectory will
jump precisely at y = y⋆ consistent with Eq. (4) (here
Ωβ = {y < y⋆} and ∂Ωβ = {y⋆}).
After escape the process undergoes an excursion gov-

erned by Eq. (9) (instantaneous on the current time-
scale), similar to the one considered in Ref. [8], after
which it returns to S− at p(y) = 0. Thus, the non-
meanfield behavior predicted from Eq. (1) precisely arises
in the present example and is an instance of SISR due to
intrinsic noise. The observed non-meanfield behavior is

a limit cycle with period (in units of α−1)

T (A, β) =

∫ y⋆

0

dy

g(y)
, (15)

which is controlled by β.
For small but finite α and ε the escape region will be

smeared. To compute the deviations from the determin-
istic limit, we expand V (y) in Taylor series in y − y⋆.
Introduce z = ε−1(y − y⋆ −∆y⋆), where ∆y⋆ is a deter-
ministic correction to y⋆ to be determined. Then, after
a straightforward computation we obtain that to leading
order ∆y⋆ = ε ln ε−1/|V ′(y⋆)|, where V ′ = dV/dy, and
the boundary layer solution ρ0(z) valid for |z| ≪ ε−1 is

ρ0(z) = C exp

{

− ν(y⋆)

g(y⋆)|V ′(y⋆)|
e|V

′(y⋆)|z

}

. (16)

With C = 1 this is also the probability that the trajectory
has not jumped yet at y = y⋆ +∆y⋆ + εz. Using this, we
can compute the average jump-off point 〈y〉. Evaluating
the necessary integrals, we finally obtain (to leading order
in ε)

〈y〉 − y⋆ =
ε

|V ′(y⋆)|
ln

(

g(y⋆)|V ′(y⋆)|
εν(y⋆)eγ

)

, (17)

where γ ≃ 0.5772 is the Euler constant. Similarly, the
standard deviation of the jump-off point is (to leading
order)

√

〈y2〉 − 〈y〉2 =
πε

|V ′(y⋆)|
√
6
. (18)

Note that the deterministic correction ∆y⋆ = 〈y〉 − y⋆
contains a large logarithm and therefore always domi-
nates the fluctuating contribution. Also, since the bal-
ance needed to obtain β = O(1) implies that ε =
O(lnα−1), this, in turn, implies that ∆y⋆ = O(ln lnα−1)
and, therefore, gives a noticeable correction to y⋆ unless
α is unrealistically small. We also point out that this
results in the noticeable shift ∆T = ∆y⋆/g(y⋆) of the
period of the limit cycle.
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FIG. 3: Mean and standard deviation of the jump-off point y
from the KMC simulations (data points) and theory (gray).
The dotted line shows the value of y⋆.

We now check the validity of the picture presented
above with KMC simulations of the Schnakenberg model.
Figure 3 shows the results of a simulation for α = 10−4,
A = 0.5, and ε = 0.2, a parameter set at which Eq. (9)
has no limit cycle. This figure clearly shows a noise-
induced coherent limit cycle due to SISR [8]. Fur-
thermore, by choosing parameters appropriately, we can
make this motion more and more coherent: in Fig. 3
we plot the mean and standard deviation (as errorbars)
of the jump-off point y (see Fig. 2a). Here we take the
parameters corresponding to β = 1, A = 0.5 and vary
ε. Constraining the rate constants in this way and let-
ting ε decrease, we can improve coherence of the SISR
limit cycle. Note that the average jump-off point for the
noise-induced limit cycle differs rather significantly from
y⋆ = 0.267 predicted by the asymptotic theory due to the
very slow convergence of the latter. However, including
the fluctuation corrections from Eq. (17) results in excel-
lent quantitative agreement between the simulation data
and theory.
The effect of the intrinsic noise is demonstrated most

dramatically by looking at the global bifurcation picture
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FIG. 4: Bifurcation diagram for the noise-induced limit cycle.
Points are results of the simulations with α = 10−5, thin lines
are theoretical predictions for the corresponding values of β.

for the noise-induced limit cycle. In the absence of the
noise the limit cycle appears via a Hopf bifurcation at
A = 1 + O(α), and in the limit α → 0 appears in a dis-
continuous fashion at A = 1 (solid line in Fig. 4). The
noise changes this qualitatively: in Fig. 4 we plotted the
average frequency of the limit cycle from the simulations
for several values of β with α = 10−5 fixed. The period of
the limit cycle shows O(1) deviation from the meanfield
behavior (solid line) for all values of A. The nature of
the bifurcation is also altered: it is now creating an infi-
nite period orbit. This is consistent with our theoretical
prediction that (asymptotically) the limit cycle is born
at A = Ac < 1, where Ac solves β = βc(A). The pre-
dicted limit cycle period also shows excellent agreement
with the numerics in Fig. 4 (thin lines).
In conclusion, we have demonstrated that intrinsic

fluctuations in systems far from equilibrium possessing
fast/slow dynamics can have a profound effect on the ob-
served dynamics, producing strongly non-meanfield, yet
essentially deterministic dynamical behaviors.
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