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We have performed individual-based lattice simulations of SIR and SEIR dynamics

to investigate both the short and long-term dynamics of childhood epidemics. In

our model, infection takes place through a combination of local and long-range

contacts, in practice generating a dynamic small-world network. Sustained oscilla-

tions emerge with a period much larger than the duration of infection. We found

that the network topology has a strong impact on the amplitude of oscillations and

in the level of persistence. Diseases do not spread very effectively through local

contacts. This can be seen by measuring an effective transmission rate βeff as well

as the basic reproductive rate R0. These quantities are lower in the small-world

network than in an homogeneously mixed population, whereas the average age at

infection is higher. Keywords: Lattice model; Recurrent epidemics; Small-world

networks

1. Introduction

The recurrent outbreaks of measles and other childhood diseases is one of

the most striking features of the pre-vaccination records. Despite continuing

efforts over more than seven decades, the question of what is the mechanism

behind these oscillations has not yet received a fully satisfactory answer 1.

Measles, mumps, varicella (chickenpox) and rubella are examples of dis-

eases that confer lifelong immunity, and can be analyzed within the SIR

(Susceptible, Infected and Recovered) or SEIR (comprising an additional

class, the Exposed) general frameworks. If the population is constant, the

mean-field implementation of SIR and SEIR scheme disregarding hetero-

geneity in contact structure leads to systems of respectively two and three

coupled ODE’s. Although based on this most unrealistic description of
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human contacts, mean-field deterministic models still capture most static

properties of epidemics of typical childhood diseases including the thresh-

old values for the spread of an epidemic, its final size as well as the average

age at which infection is acquired. However, these models fail in that they

predict oscillations that are invariably damped. This, of course, contradicts

the available records which evidence self-sustained oscillations of roughly

constant period during the pre-vaccination era.

After a period during which complicated age-structured models were

favored, seasonally forced models have become the framework of choice to

explain the historic time-series. In fact, when subject to parametric forcing,

deterministic SIR and SEIR ODE’s display a rich dynamical behaviour in-

cluding period-doubling cascades to chaos, quasiperiodicity, multistability

between cycles of different periods, etc. 2,3. When the drive is sinusoidal,

the level of forcing at which complex behaviour is observed is deemed un-

reasonable. However, when a more realistic formulation is used, like an

alternating sequence of periods of high and low transmissibility mimicking

the opening and closing of schools, the levels of forcing required to obtain

complex behaviour is considerably lowered 2,4. If epidemics correspond

to periodic orbits perturbed by noise, as opposed to chaotic solutions 5,6,

then only periods which are integer multiples of the forcing period are al-

lowed. More likely, the observation of both integer and non-integer periods

in incidence time series of rubella and chickenpox is the signature of an au-

tonomous system oscillating with a frequency that may or may not become

locked with an external drive 7.

By definition, there is one important feature that cannot be described

by deterministic models. That is the pattern of disease persistence, i.e. the

probability that a recurrent epidemic goes extinct after a given number of

cycles. Persistence is an emergent property arising from the interaction of

stochastic effects and dynamics. Its meaningfulness derives from being the

key ingredient in the definition of the Critical Community Size (CCS), the

population number below which a particular disease cannot be sustained.

But persistence is also a tool to assess the relative merits of stochastic

versus deterministic models. Indeed, by far the most serious shortcoming of

deterministic forcing is that during the minima often the fraction of infective

individuals falls below 10−10, meaning that the global human population

would not be enough to sustain recurrent epidemics.

It is well known that, like forcing, stochastic effects also tend to sustain

the oscillations 8. However, the implementation of stochastic SIR and SEIR

dynamics disregarding heterogeneity in contact structure, generates only



November 20, 2018 10:22 Proceedings Trim Size: 9in x 6in vbmat05arxiv

3

fluctuations which are much too small and irregular when compared to real

epidemics unless immigration of infectives from outside is introduced.

Realizing that deterministic forced models fail short of explaining the

patterns of persistence and that stochasticity alone could not provide for the

necessary agreement with data, researchers began to explore the role of spa-

tial factors in the persistence and dynamics of epidemics. The traditional

way to account for an explicit spatial dependence in population ecology

and epidemiology is through the use of metapopulation, or patch, models.

These are based on a coarse-grained distribution of the global population

over a number of interacting subpopulations – the patches. Within-patch

dynamics is built into the model a priory and can be made as complex

as one wishes to from the start, with heterogeneity effects restricted to

the coupling between the patches. The coarse-graining procedure limits

the ability of the model to assess the impact of the structure of individual

contacts on the overall dynamics. It says very little about how emergent

complex behaviour on a global scale can arise from simple interaction rules,

either strictly local or not. To address this issue one must consider instead

a network of interacting individuals.

Nevertheless, some interesting results have been achieved by adding

metapopulation structure to stochastic models, either in conjunction with

external forcing or not. Lloyd and May 9 simulated a two-patch stochas-

tic SEIR model, each one having at least 106 nodes. The oscillations they

obtained were too irregular and their amplitude too small when compared

with data records.Moreover, strong coherence could not be obtained unless

a considerable level of seasonal forcing was applied. However, in that case

the number of infective individuals dropped to the unrealistic levels pre-

dicted by deterministic models. Bolker and Grenfell 10 considered a similar

model but allowed for contacts inside each subpopulation and between in-

dividuals belonging to different subpopulations. By increasing the ratio of

between- and within-patch contacts they could increase the levels of per-

sistence. Although their study clearly indicated that adding structure to

the network of contacts could indeed enhance persistence it greatly overes-

timated the size of the population needed to sustain recurrent epidemics.

It is interesting to note that the modelling of disease spread as a combi-

nation of local and long-range interactions in the context of patch models10

actually precedes the introduction by Watts and Strogatz of a class of net-

works that interpolates between regular lattices and random networks 12 –

small-world (SW) networks – and the acknowledgment of the importance of

the small-world phenomenon on the spread of epidemics that soon followed
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13,14,15,16,17. Subsequently Boots & Sasaki 16 have used SW networks to

analyze the selection of a particular strain of a pathogen and Keeling 18

considered a network of nodes which had many of the properties of a SW

to calculate epidemic thresholds and determine a number of properties of

the endemic state.

More recently, probabilistic cellular automata (PCA) models of infec-

tious diseases evolving on SW networks were proposed by Johansen 19,20,

Kuperman and Abramson 21 and He and Stone 22. These particular mod-

els belong to the SIS (Susceptible-Infective-Susceptible) class, that is they

apply to diseases which do not confer lifelong immunity. Therefore they

are not suited to describe typical childhood diseases. A more problematic

feature common to all these studies is that they predict oscillations with

periods on the scale of infection and/or immune periods. In contrast, re-

current epidemics of childhood diseases have periods from a dozen up to a

few hundred times the infection cycle. Notwithstanding, these models are

certainly of great interest as toy models of generic SIS dynamics.

Whether recurrent epidemics are governed by an external drive or by

the intrinsic nonlinear dynamics has been the focus of intensive debate

practically since the dawn of theoretical epidemiology. Here we make a fur-

ther contribution to this still unfinished debate by presenting a stochastic

model that discards external factors and considers instead the heterogene-

ity of the contact network. As reported in a previous publication 23 the

stochastic implementation of SIR dynamics in a small-world network can

describe the onset of epidemic cycles in a population, without considering

any exogenous factors such as seasonal forcing or immigration of infectives

from outside. In our model, infection takes place through a combination

of local rules and long-range contacts, generating a dynamic small-world

network. In sharp contrast to the previous studies in the same vein 19,20,21,

we observe the emergence of a characteristic time scale which is not that of

birth (replenishment of susceptibles) neither is it related in any trivial way

to the period of infection.

The results in this paper are arranged in two main parts. The first one is

devoted to the SIR implementation. A first set of simulations of long-term

behaviour shows that the network topology has a strong impact both on

the amplitude of oscillations and the level of persistence. Then, we consider

the evolution of an epidemic in a closed population, with birth and death

rates set to zero. We show that the basic reproductive rate, R0, increases

from its minimum value in a regular lattice with local contacts only up to

the maximum, mean-field value, as the percentage of long-range infection
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is increased from zero to one. In the second part of the paper we present

simulations of the more realistic SEIR version. We calculate the period

and amplitude of oscillations, R0, as well as the average age at infection for

realistic demographic and etiological parameters corresponding to measles,

rubella and chickenpox.

The detailed structure of the paper is the following: in Section 2 we

describe the algorithm in detail; in Section 3 we present the results of the

SIR model and in Section 4 those of the SEIR model. This is followed by

a Discussion and, finally, the Conclusion.

2. PCA Model

2.1. General description

Here we describe the probabilistic cellular automata (PCA) implementation

of the SIR model that has been briefly outlined in a preceding paper 23.

Individuals live on a square lattice of N = L × L sites. The bonds be-

tween sites are connections along which the infection may spread to other

individuals. Infection proceeds either locally, within a prescribed neigh-

bourhood, or through a link established at random between any two indi-

viduals. We introduce a small-world parameter pSW defined as the fraction

of attempts at infection carried out through a random link; pSW = 0 corre-

sponds to a regular lattice where each individual contacts with his k nearest

neighbours only, while pSW = 1 corresponds to a random network. For in-

termediate values of pSW the network of contacts is neither fully ordered

nor completely random.

2.2. Algorithm

We choose first between birth, death and infection events, the latter being

either local or long-range with respective probabilities plocinf = (1 − pSW)β0

and plrinf = pSWβ0. (Note that we call long-range link any connection estab-

lished at random to any node on the lattice, not only those that connect

to sites lying outside the established neighbourhood). The total popula-

tion number if fixed, therefore pbirth ≡ pdeath. β0 = plocinf + plrinf is the total

probability of an attempt at infection while (1−pbirth−pdeath−plocinf −plrinf)

is the probability that nothing happens. There is no restriction associated

to the fact that the sum of probabilities cannot exceed one because it is

possible to attribute any weight to any one of the events - birth, death

or infection - by a suitable choice of the time scale; the probability of
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not realizing any event will change accordingly and a sweep through the

lattice will simply correspond to a different time unit. In one time unit,

or PCA step, we perform N attempts to realize one given event, as fol-

lows: we generate a random number r uniformly distributed between 0

and 1. If 0 < r ≤ pbirth we make an attempt to realize a birth event;

if pbirth < r ≤ pbirth + pdeath an individual picked at random will die; if

pbirth + pdeath < r ≤ pbirth + pdeath + plocinf an attempt at local infection is

made while if pbirth + pdeath + plocinf < r ≤ pbirth + pdeath + plocinf + plrinf the

attempt will be long-ranged. Finally, if pbirth + pdeath + plocinf + plrinf < r ≤ 1,

we just carry on and generate a new random number. The realization of

the events is the following:

(1) Attempt at local infection or long-range infection: First choose a

site i at random; Then,

(a) If that site is occupied by a recovered (R) individual or an

infectious (I) individual, do nothing.

(b) If it is occupied by a susceptible (S) then choose another site

j from a list of k possible neighbours, in the case of local in-

fection, or from all of the N sites, with equal probability, in

the case of long-range infection. In the simulations presented

here, the local range comprises nearest neighbours, next near-

est neighbour and third nearest neighbours (k = 12). If,

i. Site j is occupied either by another susceptible or a recov-

ered individual: do nothing.

ii. The site is occupied by an infective: The first individual

becomes infected.

(2) A death event is chosen. Then one picks an individual at random

who dies irrespectively of his present state. The probabilities of

death are then proportional to the density of S, I and R individu-

als. Susceptible and infective individuals who die become recovered;

recovered individuals remain in that same class.

(3) Birth event: one looks at the lattice (at random) for a recovered

individual. Once found, that individual becomes susceptible. The

trial only ends when one actually finds a recovered individual, so

that the birth rate, as it should, is independent of any density.

After a time during which he stays infectious to others, the individual re-

covers. He becomes immune for life and cannot be infected again. For

childhood diseases these periods vary only by a small amount among indi-
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viduals within a population. So, it is more realistic to assume a constant

infectious period - deterministic recovery - than a constant probability of

recovery leading to an exponential distribution of infectious periods 24. We

model deterministic recovery by associating a counter nr to every individ-

ual. Upon infection, the counter for that individual is updated at each time

step, nr → nr +1. At each PCA step we move to the recovered class those

infectives for which the counter has reached the fixed infectious period τ ,

and reset their counter. Stochastic recovery, on the other hand, is modelled

by a Poisson process: we add a new event to the list above – a recovery

event – taking place with probability γ. When such event is chosen, one

picks an individual at random; if infective, that individual is moved into

the recovered class, otherwise nothing happens.

The SEIR model comprises one additional class, the exposed (E). After

being infected, the individuals enter a latency period during which they

cannot be re-infected yet they are unable to transmit the infection to others.

In our simulations the individuals move deterministically from the exposed

to the infectious class after τlat steps and then stay infectious for τinf .

One important difference between the model and the population dynam-

ics in developed countries is the implicit assumption of the so-called Type

II mortality, where individuals die with equal probability independently of

their age, as opposed to Type I mortality where all individuals live up to

the same age and then die 1.

3. Results: SIR model

3.1. Persistence

Recurrent epidemics can persist in finite populations because of the finite

birth rate that allows for the renewal of susceptibles. The way in which

persistence varies with the small-world parameter pSW depends crucially

on the rate at which fresh susceptibles are supplied by birth. As shown in

Fig. 1, for intermediate values of µ the persistence coefficient is zero at low

pSW, and approaches one over a narrow range of pSW. At values µ / 0.001

a maximum starts to develop. Barely noticeable at µ = 0.0006, it is already

quite pronounced at µ = 0.0004. At pSW = 1.0, only about half the runs

survive up to the maximum ascribed time, whereas within the range pSW =

0.2− 0.3 more than 90 % of the runs reach tmax. The relevant fact is that

at low enough birth rates there is an optimal value of pSW for the disease

to persist in finite populations. Conversely, for µ & 0.001 the persistence

coefficient shows a minimum at finite pSW. The logarithmic scale in Fig. 1
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Figure 1. Persistence coefficient, defined as the fraction of runs that attain a
prescribed time tmax = 20000 of a total of n = 100 runs started, calculated on a
400 × 400 lattice with deterministic recovery. The initial fraction of susceptibles
was s0 = 0.165. The probability of infection is β0 = 0.66 and the infectious period
τ = 16. The different curves correspond to the following birth rates: µ = 0.0002
(triangles left), µ = 0.0004 (diamonds), µ = 0.0006 (circles), µ = 0.001 (squares),
µ = 0.002 (triangles down) and µ = 0.005 (triangles up).

enables us to highlight this remarkable symmetry of behaviour but here we

must note that what happens at high birth rates is irrelevant for childhood

diseases. Indeed, for τ given in days (which is not unreasonable) we get a

birth rate of µ = 0.002 day−1 corresponding to an average lifespan of 1.4

years! Even for the lowest µ with which we can still observe a reasonable

level of persistence, the lifespan would only be around 7 years. This feature

is a distinguishing property of the PCA implementation of the SIR model,

namely that to obtain realistic patterns of persistence one has to choose

birth rates at least one order of magnitude higher than the real values. We

shall see in Section 4, that the adoption of the more realistic SEIR dynamics

permits to avoid this problem.

The fact that persistence depends on the fraction of long-range con-

tacts implies that the Critical Community Size (CCS) also depends on the

structure of the contact network. In order to demonstrate how the PCA

can be used to estimate the Critical Community Size, and how the CCS

depends on the fraction of long-range infection we choose two examples, at

pSW = 0.07 and pSW = 0.1, with a birth rate µ = 0.001 (squares in Fig.
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1). While at pSW = 0.1 there is a sharp rise in persistence, at pSW = 0.07

a much smoother curve is obtained (Fig. 2). The population size at which

the persistence rises above 50 % can be taken as a estimate of the CCS but

we might as well choose a different threshold.
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Figure 2. Persistence coefficient as a function of lattice size for pSW = 0.07
(triangles) and pSW = 0.1 (diamonds) at µ = 0.001. The other parameters are
the same as in Fig. 1 except n = 200.

3.2. Amplitude of oscillations

Fig. 3 shows a typical output of the SIR model implemented on a fairly large

lattice. The time series shown are for the susceptible and infective fraction.

It is impossible to run the three-state SIR implementation for a long time

using realistic demographic and etiological parameters. Extinction is almost

certain to occur after only a few cycles. Thus the values of the birth rates

used here are much larger that real ones, again for a τ of a few days.

When pSW is small, the oscillations have large amplitudes and are

strongly synchronized. Keeping all other parameters unchanged but set-

ting pSW = 1.0 we observe that oscillations become much more irregular

and their amplitude is considerably diminished. In Fig. 4 we plot the root

mean square (RMS) amplitude of the oscillations in the fraction of sus-

ceptibles (a) and infectives (b) as a function of the birth rate for different

values of pSW. As µ is decreased the RMS amplitudes are amplified and

this trend is the more pronounced the smaller the value of pSW.

Looking at the data from a different perspective now, one detects quite

clearly the enhancement of stochastic fluctuations growing into fully devel-

oped oscillations as the relative weight of long-range infection is decreased.
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Figure 3. Typical evolution of the fraction of infectives (top) – number of infec-
tive individuals divided by the system size N – and the fraction of susceptibles
(bottom), obtained with the SIR PCA model implemented on a small-world net-
work of N = 160000 ≡ 400 × 400 individuals. In the simulations, 90 % of the
contacts are local and the remaining 10 % long-range (pSW = 0.1). Recovery
was stochastic with a probability γ = 0.0625 ≡ 1/16. The other parameters are
µ = 0.0004 and β0 = 0.66. The system oscillates for more than 50 cycles before
extinction occurs after about 30950 PCA steps.

The smaller the birth rate the more accentuated the effect becomes: at

µ = 0.001 the amplitude of the susceptible oscillations at pSW = 0.08 is ap-

proximatively four times that of the homogeneous mixed population while

at µ = 0.0004 the same ratio is almost five. The increase in the ampli-

tude of oscillations in the fraction of infectives (Fig. 4 (b)) follows that of

susceptibles but it is less marked.

3.3. Effective transmission rate

Diseases do not spread very effectively on lattices when only local contacts

are allowed because infective individuals tend to interact mostly with other

already infected individuals. To evaluate the impact of the aggregation

of infectives and susceptibles into clusters on the spread of the disease

brought about by the local contact rules we can estimate the transmission

rate directly from the simulations. This is done by observing that once the

transients have died out, the mean number of new infections that take place

in a short time interval ∆t, nni∆t, is approximatively proportional to the
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Figure 4. RMS amplitude of oscillations in the fraction of susceptibles (a) and
infectives (b) as a function of the fraction of long-range contacts for decreasing
values of the birth rate. Other parameters the same as in Fig. 3. Stochastic
recovery. Each point represents an average over 10 runs started from different
initial conditions.

product of the mean number of infective individuals by the mean number

of susceptibles during that same time interval:

nni∆t ∼ I∆t × S∆t. (1)

The sensitive issue here is to choose a suitable value for ∆t, which must be

much smaller than the average period of oscillations or otherwise we would

not get an instantaneous measure of transmission, but at the same time

considerably larger than the infection period so that stochastic effects get

averaged out. There is no recipe to pick up the right value, but choosing

a ∆t of a few dozen time steps usually guarantees that the proportionality

(1) is verified. In that case, we can define an effective transmission rate as:

βeff(t) =
nni∆t(t)

I∆t(t)S∆t(t)
. (2)

This instantaneous transmission rate fluctuates wildly on the time scale of

the birth rate but once the transients have died out we can calculate the

temporal mean. This (averaged) effective transmission rate stays always

below the mean-field transmissibility β0. Indeed, by aggregating infectives
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and susceptibles into clusters, the structure of local infection on a regular

network structure acts to keep the number of contacts that can actually re-

sult in transmission, namely those between a susceptible and an infective,

well below the level that would result if the individuals were homogeneously

distributed on the lattice irrespectively of their disease status. Although, as

we shall see below, the dynamic small-world structure of contacts exhibits

some features of the well-mixed situation, locally the structure of contacts

remains highly clustered. As long as infected individuals remain in contact

mostly with other already infected individuals the progression of the disease

stalls but once an individual belonging to an infectious cluster establishes

a shortcut that propagates the disease into a region where susceptible in-

dividuals predominate, the disease will perhaps get a new boost that will

carry it through one more cycle.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
pSW

0.3

0.4

0.5

0.6

0.7

0.8

β ef
f

Figure 5. Effective transmission rate βeff vs. the small-world parameter pSW.
The reduction of βeff that arises both for deterministic (circles) and stochastic
(squares) recovery is due to the clustering of infectives and susceptibles. The
dashed line indicates the value of the transmissibility, or total probability of
realizing an infection event used in the simulations: β0 = 0.66. Note the almost
perfect agreement with the mean-field result βeff ≡ β0 observed at pSW = 1.0
for stochastic recovery. The birth rate is µ = 0.0006, the infectious period for
deterministic recovery τ = 16 and γ = 0.0625 ≡ 1/τ for stochastic recovery. Each
point represents an average over 10 runs.

As shown in Fig. 5, βeff increases smoothly as pSW increases. For values

of pSW to the left of the lower end of the curves only a very small fraction
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of the runs last for more than a few cycles. With such a small persistence it

becomes impossible to follow the long term dynamical regime and compute

repeated time averages of non-transient oscillations. The two curves shown

in Fig. 5 correspond to stochastic and deterministic recovery. Their shape

is identical, but the value of βeff for stochastic recovery always stays below

that obtained with deterministic recovery. The values of βeff for stochastic

recovery converge to the mean-field value for pSW → 1 with a small dis-

crepancy due to finite-size effects, whereas for deterministic recovery βeff is

still about 3 % above β0 in the same limit. Moreover we found that the

amplitude of oscillations is also larger for deterministic recovery than for

stochastic recovery, the differences being small at large pSW but increasing

significantly as pSW is lowered. This is in agreement with a previous study

of a homogeneously mixed stochastic model, showing that sharp distribu-

tions of the infection period result in larger fluctuations than those with a

smooth distribution 24. In our model this effect actually intensifies when

contact structure is introduced.

3.4. Basic reproductive rate

It is incontrovertibly accepted that in order to figure out if a given pathogen

will be able to succeed in a host population the crucial quantity to compute

is the basic reproductive rate R0. This is the number of secondary infections

produced by an infected individual in a population entirely composed of

susceptibles.

The analysis of steady state solution of the SIR deterministic ODE’s

considering only weak homogeneous mixing – meaning that the rate of new

infectives is proportional to the total number of susceptibles – and Type II

survival, gives 1:

R0 =
1

µA
, (3)

where A is the average age at infection, in the case of constant popula-

tion size. Under the more stringent condition imposed by the mean-field

approximation, one has also 1

R0 =
βN

γ + µ
. (4)

Note that relations (3) and (4) suppose stochastic recovery.

The definition of R0 rests on the existence of a pristine susceptible

population, i.e. it is valid only at vanishing infective fraction. However, it
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is a consequence of mean-field models and a fact confirmed by the analysis

of many real epidemics, that following the introduction of a pathogen in

a population consisting entirely of susceptible individuals the number of

infective individuals grows exponentially in the early stages:

I(t) ∼ eΛt, (5)

where Λ = (R0−1)/τ . So, with the exception of incipient epidemics (R0 →

1), very soon after an epidemic has started from a single infective, the

number of infectives is already too large for the definition of R0 to apply.

What can be measured directly from the PCA in long-time simulations,

and in most field studies is rather Rt, the effective reproductive rate at a

given time t during the evolution of the disease when there are also infective

and recovered individuals present. Upon the further assumption of weak

homogeneous mixing, we can write

Rt→∞ = R0s
∗ (6)

where s∗ is the fraction of susceptibles in the endemic steady-state. If the

rate at which susceptible individuals are infected is exactly balanced by the

rate at which new susceptibles are born then R̄t→∞ = 1, where the bar

denotes the temporal mean. That is, each primary infection will produce

on average exactly one secondary infection. Under these precise conditions,

the basic reproductive rate is simply R0 = 1/s∗.

The depletion of susceptibles during the epidemic implies that Rt < R0

always. If Rt is maintained below 1 for sufficiently long, then the pathogen

will become extinct. However, as we can see in Fig. 6, Rt calculated directly

from the PCA oscillates around an average value which, within statistical

errors, is exactly one. Rt drops below the self-sustained threshold for half

the period of oscillations only to rise again above it in the next half-cycle.

This result has drastic implications on the assessment of the risk of recurrent

outbreaks of infectious diseases based on calculations of Rt. It is usually

assumed that as soon as Rt drops below 1, an epidemic is on its way to

be contained. Very recently this criterium was used to judge the outcome

of the SARS epidemic 25,26 based on data spanning only a few weeks. In

this vein, the results in Fig. 6 should act as a warning particularly when,

as it is often happens, one has to deal with short time series or otherwise

incomplete data.

Now we must make the distinction between the long-time measurements,

using time averages over (extended) time series of recurrent epidemics and

short-time measurements of R0. For the long-term measurements we have
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Figure 6. Evolution of the effective reproductive rate in a SEIR simulation. Rt

is calculated by counting the number of secondary infections caused by every
infective individuals and taking averages. The result is a very noisy time series
which nevertheless shows an underlying structure composed of cycles with the
same period as the oscillations in incidence. Smoothing the data by averaging it
out with a moving window brings forward the pattern of oscillations (thick plain
curve). In the SIR model we observe the same effect only the data contains a lot
more noise.

different possibilities to estimate R0: We can either i) compute A directly

from the PCA by the method described in the next Section and then use

Eq. 3 to evaluate R0. ii) Estimate the effective transmissibility βeff as

described in Section 3.3 and then compute R0 from (4) with β ≡ βeff or

iii) use the fact that Rt = 1 once an asymptotic regime is attained and

estimate R0 = 1/s∗.

As an alternative to perform lengthy simulations of recurrent epidemics

for the purpose of computing R0, we can run the PCA in a closed popula-

tion. Discarding births and deaths by setting µ = 0, we can iv) compute

the R0 from the final size equation (FSE) 27

ln(s∞) = R0(s∞ − 1) + ln(s0), (7)

where s∞ = S∞/N , with S∞ the number of susceptibles left once the epi-

demic has died out. The initial fraction of susceptibles is s0 = (N − 1)/N

since every new run begins with a single infective. The last form of comput-

ing R0 that we considered was to v) fit the exponential growth law, Eq. (5),

to the early stages of evolution of an epidemic ravaging a wholly susceptible

population. The results are presented in Fig. 7. They show how R0 can be
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used to assess the departure from mean-field behaviour as the fraction of

long-range infection is decreased, and also that in a structured population

with the characteristics of a dynamic small-world, the magnitude of R0 is

always below the value that would be obtained in an homogeneously mixed

population. Different procedures of estimating R0 that would give the same

result under the mean-filed approximation will now yield markedly distinct

values. This is because they still appeal to an approximation at some stage

but not all at the same stage. Undoubtedly, this is a blow to the worth of

R0 evaluated in practical situations. Indeed, with the exception of contact

tracing in the very early stages of an epidemic, which is a very difficult task

to perform, R0 can only be determined through indirect methods. Our

simulations show that evaluating R0 from different sources, for instance

from A obtained from serological studies, or from the equilibrium number

of susceptibles obtained from historic time series can lead to intrinsically

different results as a consequence of the heterogeneity of contacts.

3.5. Average Age at Infection

The moment of their lives when susceptible individuals acquire infection is

a very important epidemiological quantity. The average age at infection, A

is inferred from serological surveys and can be compared to the output of

epidemiological models.

We evaluate the impact of network structure on A by calculating it

directly from the simulations as follows: a counter is associated to every

susceptible and the moment when this individual is infected is recorded.

Averaging over every single individual who has become infected so far one

obtains a quantity that shows a slow but unremitting trend towards asymp-

totic behaviour characterized by small, rapid fluctuations around a steady-

state value. Once the long term evolution appears to stabilize we compute

the time average.

The average age at infection was found to be linear in 1/µ down to only

8 % of long-range contacts. Below that value of pSW persistence was too low

to obtain meaningful averages. The slope of the lines in Fig. 8 gives 1/R0.

Moreover, the ratio r = RtAµ/s
∗ varies from 0.9999± 0.0002 at pSW = 1.0

to r = 0.9994 ± 0.0001 at pSW = 0.08 showing that mean-field relations

hold to an excellent approximation down to surprisingly low values of pSW.

Deviations to mean-field behaviour do occur but are only slight even in

relatively small populations. From the data in Fig. 8 we can extrapolate

the average age at infection at low birth rates. Setting the time scale by
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Figure 7. R0 as a function of the small-world parameter pSW. The two upper
curves were calculated from simulations in a closed population (µ = 0), from the
final size equation (7) (circles) and by fitting exponential growth using Eq. (5)
(diamonds). At pSW the number of infectives grows in time as a power law and
therefore Λ ≡ 0 implying R0 ≡ 1. The curves obtained from the analysis of long-
term dynamics using R0 = 1/s∗ (squares) and from A and Eq. (3) (triangles)
are almost indistinguishable. In the limit of a random network the four curves
converge to β0/(γ + µ), indicated by the dashed line, with a small discrepancy
attributed to final size effects. SIR model in a 400 × 400 lattice with stochastic
recovery; parameters are the same as in Fig. 5.

taking L ≡ 1/µ = 61 years we obtain A = 6 years for pSW = 1.0, A = 7.7

years for pSW = 0.3 and A = 10.2 years for pSW = 0.08 showing that the

average age at infection increases significantly when we consider a local,

clustered network of contacts.

4. Results: SEIR model

4.1. Epidemic cycles

We now present numerical simulations of the more sophisticated SEIR

model, with etiological and demographic parameters corresponding to

measles, rubella and chickenpox, in developed countries, in the pre-

vaccination era. Just as in the SIR case we observe sustained oscillations in

incidence. The oscillations obtained from the SEIR model are less coherent

than those obtained with the SIR version. Their aspect is actually closer

to the observed time series.
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Figure 8. The average age at infection measured in PCA steps as a function of
life expectancy 1/µ in the same units, for pSW = 1.0 (circles), 0.3 (squares),
0.2 (triangles) and 0.08 (diamonds). The slope of the lines gives 1/R0. The
parameters are β0 = 0.66, γ = 0.0625; the initial infective fraction was s0 = 0.165
and 50 infectives were present on the lattice. The values of A were obtained from
a temporal average of data sampled from t = 10000 to t = 50000 at 10 steps
interval and further averaging over 10 realizations starting from different initial
conditions.

But the most consequential finding of the SEIR simulations is the re-

alization that one can only obtain sustained oscillations with amplitudes

compatible with the existing data records, and for realistic values of the

model parameters – (e.g. life expectancy, latency and infectious periods) –

if one chooses values of pSW in the small-world region 13.

To illustrate this feature, we show in Fig. 9 two time series for measles,

one obtained for pSW = 0.2 and the other for pSW = 1.0. The amplitude of

the oscillations is almost double in the small-world network.

For pSW = 1.0 the frequency distribution is peaked around 1.5 years

while for pSW = 0.2 the peak is at about 2.5 years. For measles, almost

every data record in developed countries points to cycles of almost exactly

2 years, in between those two values. Agreement with the observed periods

can be improved, but only to some extent, by fine tuning the transmissi-

bility. Indeed, increasing β0 has the effect of decreasing the period making

it more in line with the observations. The resulting time series are shown

in Fig. 10. Nevertheless, we must stress that β0 is nothing like a free

parameter. First of all it cannot be changed at will in order to tune the
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Figure 9. Time series of the number of infectives obtained from simulations
of SEIR dynamics in a 1000 × 1000 lattice with µ = 1/61 yr−1, τlat = 6 days,
τinf = 8 days and β0 = 3.92 day−1.

period because the amplitude of oscillations also changes and the average

size of outbursts must remain comparable to those observed in cities with

the same population size 23. Secondly, since the transmissibility of typical

childhood diseases must be similar (see Section 4.3 below), differences in

period, average age at infection, etc. between them must be achievable with

values of β0 of the same order of magnitude and respecting the expected in-

fectious rank of those diseases. Finally, and most importantly, although β0

is a parameter that can only be very loosely inferred from the data, there

are indirect estimates of βeff from R0 and A, using mean-field relations,

that set an order of magnitude for β0.

4.2. Estimates of A and R0

We have computed the average age at infection obtaining A = 1.6 years

for pSW = 1.0 and 3.6 years for pSW = 0.2 for the simulations shown in

Fig. 10, and A = 1.9 years for pSW = 1.0, and 4.1 years for pSW = 0.2 for

the simulations in Fig. 9. While the latter is just barely above the lower

bound of the interval commonly accepted to correspond to measles data –

between 4 to 6 years – the values obtained with the homogeneous mixed

population lie notably outside the realistic range. A further refinement

consisting in the inclusion of protection by maternal antibodies in newborns
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Figure 10. Same parameters as in Fig. 9 except that now β0 = 4.75 day−1. The
period of oscillations shrinks when β0 increases. Note the change of scale in both
axes with respect to Fig. 9.

could increase both values by 3 to 9 months putting the result for pSW = 0.2

well inside the interval of realistic values. However, this is expected to have

a deleterious repercussion on the period of oscillations, increasing it above

what is consistent with data records for measles.

For the simulation at pSW = 0.2 in Fig. 9, the average fraction of

susceptibles was s∗ = 0.0657 giving a value for R0 = 1/s∗ of 15.2 while for

pSW = 1.0 we get s∗ = 0.0312 yielding R0 = 32.1. Whereas the former lies

inside the reported range of R0 for measles, 14 − 18 1, the latter is way

off range. For the SEIR model, the mean-field expression for R0 is slightly

more complicated than in the SIR case 1:

R0 =
β

τ−1
inf + µ

(

τ−1
lat

τ−1
lat + µ

)

. (8)

Solving for β and using the values of R0 calculated above we obtain β = 4.0

and β = 1.9 for pSW = 1.0 and 0.2 respectively. While the former is close

to the β0 used in the simulations, the latter is practically one half. The

reason for this is that the transmission rate computed from Eq. (8) is rather

the βeff introduced in Section 3.3, and only in the mean-field case do we

have βeff ≡ β0. The effective transmission rates obtained directly from the

simulations by the method of Section 3.3 were βeff = 1.86 for pSW = 0.2
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and βeff = 3.93 in the homogeneous mixed case, in very good agreement

with the respective β’s calculated from Eq. (8).

4.3. Comparison between childhood diseases

In this section we show that the ability of the PCA to describe sustained

oscillations is not restricted to measles but extends to other childhood dis-

eases conferring life-long immunity. In Figs. 11 and 12 we show long-term

runs for etiological parameters corresponding to rubella and chickenpox,

respectively. We kept the small-world parameter fixed at pSW = 0.2, since

childhood diseases must share a common contact structure. The PCA is

nevertheless capable of discriminating between these different diseases, in

terms of period, average age at infection and basic reproductive rate.

The periods estimated from the Fourier transform of the time series in

Figs. 11 and 12 were T ≈ 4.4 years for rubella and T ≈ 3.4 for chickenpox;

the average age at infection was A ≈ 6.2 for rubella and A ≈ 4.7 for

chickenpox. Like for measles, A is considerably underestimated by the PCA,

most studies in developed countries giving a lower bound for A of about 9

years for rubella and 6 years for chickenpox. Still, the relative values of A

for the three diseases agree with the data 1. The basic reproductive rate

computed from the inverse fraction of susceptibles is about 10 for rubella

and 13 for chickenpox. The simulations for measles gave R0 ≈ 15. Again,

the values for measles and chickenpox are very good while the reproductive

rate of rubella is above that reported.

Based on a purely qualitative evaluation of the mode of transmis-

sion we can rank common childhood diseases in roughly two classes

of infectiousness. Measles and chickenpox are transmitted through

aerosol droplets and therefore the most infectious. In the sec-

ond group we have mumps and rubella which require direct contact

with droplets generated by sneezing and coughing. In our simula-

tions, this hierarchy of infectiousness was strictly respected, with

βmeasles
0 > βchickenpox

0 > βrubella
0 . The numerical values used in the sim-

ulations give a quantitative estimate of infectiousness:

βmeasles
0

βrubella
0

= 3.7,
βmeasles
0

βchickenpox
0

= 1.9,

and the respective effective transmission rates obtained for a fraction of

20 % of long-range contacts give:

βmeasles
eff

βrubella
eff

= 2.5,
βmeasles
eff

βchickenpox
eff

= 1.7.
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Figure 11. Time series of the number of infectives for rubella, which has longer
latency and infectious periods than measles and also lower infectiousness. Simu-
lation in a 1000 × 1000 lattice with pSW = 0.2. The birth rate µ = 1/61 yr−1 is
the same as in the measles simulations, but now τlat = 12 days, τinf = 12 days

and β0 = 1.32 day−1.

Our results suggest that measles is about three to four times more infec-

tious then rubella and about twice as infectious as chickenpox. Given the

crudeness of these estimations we can consider that the ratios agree quite

well with those reported by Keeling & Grenfell 28: 3.4 and 2.4 respectively

for the transmissibility ratios and 2.5 and 1.4 for the effective transmission

rate.a In another study 4 a value of 3.8 for the ratio of β0’s between measles

and rubella was obtained by fitting the output of a seasonally forced SIR

model to the data.

5. Discussion

The results in this paper show that both the short and long-term dynamics

of childhood diseases conferring life-long immunity can be described by

taking into account a dynamic small-world network of contacts. Moreover,

the simulations make clear that the ability of recurrent epidemics to survive

for a large number of cycles depends strongly on the level of heterogeneity

aAlthough their study focus on mumps instead of rubella, almost surely the two diseases

have very similar values of infectiousness.
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Figure 12. Time series of the number of infectives for etiological parameters cor-
responding to chickenpox. Demographic parameters and small-world parameter
are the same as for rubella and measles; τlat = 10 days, τinf = 10 days and

β0 = 2.4 day−1.

in contact structure. The fraction of runs that survive up to a maximum

ascribed time has a non-trivial dependence on the fraction of long-range

contacts displaying, at low enough birth rates, a maximum at finite fraction

of shortcuts. On the other hand, the persistence varies with the population

size, and this gives the rationale on which to base a network-dependent

Critical Community Size. The oscillations get more synchronized and their

amplitude is strongly enhanced when pSW is decreased below 1, i.e. as the

weight of local contacts is increased. The amplitude cannot keep growing

because the troughs between epidemic surges will get so deep, the number

of surviving infectives so close to zero, that a stochastic fluctuation will

eventually drive the epidemic extinct. This explains why an increase in

amplitude is correlated with a decrease in persistence.

The small-world network allows us to go step by step from a dynamical

system with a large number of degrees of freedom – which for pSW = 0 are

the 3N possible states of the lattice – to the case where the evolution can be

captured by only a couple of ordinary differential equations. How this this

contraction of phase space happens is an important but difficult question

that deserves further investigation. We do know, however, the properties

of the flow of the low dimensional deterministic system, namely that for

the SIR ODE’s the only attractor is a fixed point (s0, i0) and that there
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is a saddle point at (1, 0) with its stable manifold along the i0 = 0 axis.

The fraction of infectives in the endemic steady-state is proportional to the

birth rate, i0 = µ(R0 − 1)/β, therefore as µ → 0, i0 gets asymptotically

close to the stable manifold. Since the real part of the pair of complex

conjugate eigenvalues vanishes at zero birth rates one observes the critical

slowing down of the dynamics at µ → 0. Small disturbances such as those

provided by the stochastic drive will enable the system to make a large

excursion in phase space before returning again to the vicinity of (s0, i0)

where it is never allowed to settle.

It is clear that the progressive introduction of spatial degrees of free-

dom brings spatio-temporal coherence into the stochastic dynamics. The

oscillations at small pSW display a strong contribution from higher-order

harmonics indicating that the system visits orbits located further away

from the fixed point. Also, both the amplitude and period are larger than

at larger values of pSW, the oscillations evolving on a slower time scale com-

pared to the less structured ones observed in the limit of random mixing.

Clustering lowers the effective transmission rate and the average infective

number but has the collateral effect of deepening the troughs and rising the

peaks of oscillations. In the epidemic lows, infectives and susceptibles keep

close together and the epidemic almost dies out. But one shortcut that

randomly links an infective to the middle of a susceptible cluster will be

enough to cause a large outbreak that may even consume every susceptible

in that cluster. However some susceptibles will still remain in small clusters

scattered all over the lattice and, screened from infection, their numbers

will steadily grow at the (slow) pace dictated by the birth rate. Eventually

one or more of these clusters will reach a size large enough that there will

be a high probability of a long-range infection event linking to an individual

inside them. When this happens the conditions are set for the cycle to re-

peat itself. When the fraction of shortcuts is high, susceptibles are steadily

consumed at an intermediate rate and do not have time to aggregate into

medium-size clusters. On the average the infection does spread more effec-

tively – the average infective number is higher – but the large outbreaks

are suppressed and what we observe instead are small, rapid fluctuations

around an endemic state.

The simple fact that the PCA implementation of SIR and SEIR dy-

namics leads to sustained, fully developed oscillations as a consequence

of heterogeneity in the network of contacts is by far the most impressive

difference between our results and the output of deterministic mean-field

models. However there are quantitative differences arising in quantities
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that are very relevant for epidemiologists. The effective transmission rate

βeff is always smaller than the mean-field value β0. In this respect our long-

term simulations corroborate the results obtained from the simulation of a

single epidemic outbreak 17. R0 is also lower than in the limit of random

mixing. Moreover, in structured populations it is very important to dis-

tinguish between measurements of R0 obtained from long time series and

those focusing on a single outbreak because these two methods were shown

to present the greater differences.

The SIR implementation can be used to access the qualitative impact of

the network structure but to make the predictions of the PCA quantitative

SEIR dynamics is required. Long time series, more than twice the length of

the best available records can be easily obtained for realistic values of the

model parameters and show a good agreement with observed values of the

period and basic reproductive rate for measles and chickenpox. For rubella

the agreement was only reasonable. In all the three cases the average age at

infection is systematically underestimated, the discrepancy reaching 30 %

in the case of rubella. The values obtained could be improved by accounting

for immunity by maternal antibodies but still with this respect the PCA

behaves no better than the mean-field models.

Different childhood diseases evolve on social networks that are similarly

organized, transmission occurring predominantly in schools and households

with a few exceptions corresponding to the long-range contacts. The struc-

ture of the contact patterns is thus identical and so are the demographic

parameters. A realistic network model of childhood diseases must be able

to discriminate between different diseases, in terms of T , A and R0, purely

as a result of the different latency and infectious periods plus the trans-

missibility β0. The PCA satisfies this requirement and yields a reasonable

estimate for the infectiousness of each disease.

6. Conclusion

The individual-based network model presented in this paper combines local

structure with casual, long-range links. The latter are shortcuts through

which the disease can propagate into regions where susceptibles predomi-

nate. Correlations that build up in the system due to network structure

cause deviations from mean-field behaviour, but in the relevant limits the

mean-field results are restored. Surprisingly, we found that, when the long-

term evolution is considered, even with a small fraction of shortcuts the

mean-field relations between the average age at infection, the basic re-
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productive rate and the average number of susceptibles still hold. This

consistency may explain why, although based on a unrealistic description

of human contacts, deterministic models featuring homogeneous mixing

remained for so long the basic conceptual tool of theoretical epidemiol-

ogy. Their flaws, particularly the inability to describe recurrent epidemics,

were exposed in the present work, in the context of childhood diseases.

These are highly infectious diseases for which it is not unreasonable to

assume that anyone who engages in any basic form of social interaction

is equally at risk. Thus, we have disclosed the weaknesses of mean-field

models in the case where they are certainly the less severe. Simulation of

individual-based stochastic models becomes imperative in order to capture

the dynamical complexity of infections like HIV of Hepatitis that spread

on networks characterized by an extreme heterogeneity, like the network of

sexual partnerships or needle sharing by intravenous drug users.
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