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Uniqueness of steady states for a certain chemical reaction

Liming Wang and Eduardo Sontag
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In [1], Samoilov, Plyasunov, and Arkin provide an example of a chemical reaction whose full stochastic
(Master Equation) model exhibits bistable behavior, but for which the deterministic (mean field)
version has a unique steady state.

The reaction that they provide consists of an enzymatic futile mechanism driven by a second reaction
which induces “deterministic noise” on the concentration of the forward enzyme (through a somewhat
artificial activation and deactivation of this enzyme). The model is as follows:

N +N
k1
−→

←−

k−1
N + E

N
k2
−→

←−

k−2
E

S +E
k3
−→

←−

k−3
C1

k4
−→P + E

P + F
k5
−→

←−

k−5
C2

k6
−→S + F .

Actually, [1] does not prove mathematically that this reaction’s deterministic model has a single-steady
state property, but shows numerically that, for a particular value of the kinetic constants ki, a unique
steady state (subject to stoichiometric constraints) exists. In this short note, we provide a proof of
uniqueness valid for all possible parameter values.

We use lower case letters n, e, s, c1, p, c2, f to denote the concentrations of the corresponding chemicals,
as functions of t. The differential equations are, then, as follows:

n′ = −k1n
2 + k−1ne− k2n+ k−2e

e′ = −k3se+ k−3c1 + k4c1 + k1n
2
− k−1ne+ k2n− k−2e

s′ = −k3se+ k−3c1 + k6c2

c′1 = k3se− k−3c1 − k4c1

p′ = k4c1 − k5pf + k−5c2

c′2 = k5pf − k−5c2 − k6c2

f ′ = −k5pf + k−5c2 + k6c2 .

Observe that we have the following conservation laws:

e+ n+ c1 ≡ α , f + c2 ≡ β , s+ c1 + c2 + p ≡ γ .

Lemma 1. For each positive α, β, γ, there is a unique (positive) steady state, subject to the conservation
laws.

Proof. Existence follows from the Brower fixed point theorem, since the reduced system evolves
on a compact convex set (intersection of the positive orthant and the affine subspace given by the
stoichiometry class).

We now fix one stoichiometry class and prove uniqueness. Let n̄, ē, s̄, c̄1, p̄, c̄2, f̄ be any steady state.
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From dn/dt = 0, we obtain that:

ē =
k1n̄

2 + k2n̄

k−1n̄+ k−2
.

From dc1/dt = 0, we have:

s̄ =
(k−3 + k4)c̄1

k3ē
.

Solving dc2/dt = 0 for p and then substituting f = β − c2 gives:

p̄ =
(k−5 + k6)c̄2
k5(β − c̄2)

.

Finally, solving d(p − f)/dt = 0 with respect to c2 gives:

c̄2 =
k4
k6

c̄1 .

The derivative of ē with respect to n̄ is:

k1k−1n̄
2 + 2k1k−2n̄+ k2k−2
(k−2 + k−1n̄)2

> 0,

and therefore ē is strictly increasing on n̄.

Since c̄1 = α − (ē + n̄), it follows that c̄1 is strictly decreasing on n̄. Therefore c̄2, s̄, and p̄ are also
strictly decreasing on n̄.

Let f(n̄) = s̄+ c̄1 + c̄2 + p̄. Then, f is also decreasing function.

Thus, n̄ = f−1(γ) is uniquely defined, and, since all coordinates are functions of n̄, it follows that the
steady state is unique, too.
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