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Stability of Quantum Motion: Beyond Fermi-golden-rule and Lyapunov decay

Wen-ge Wang1,2, G. Casati3,4,1, and Baowen Li1
1Department of Physics, National University of Singapore, 117542 Singapore

2Department of Physics, Southeast University, Nanjing 210096, China
3Center for Nonlinear and Complex Systems, Università degli Studi
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We study, analytically and numerically, the stability of quantum motion for a classically chaotic
system. We show the existence of different regimes of fidelity decay. In particular, when the
underlying classical dynamics is weakly chaotic, deviations from Fermi-Golden-rule and Lyapounov
regimes are observed and discussed.
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The nature of correlations decay is an important sub-
ject in different fields of physics. In particular, after the
discovery of the so-called dynamical chaos, a large effort
has been devoted to understand their behavior in relation
to dynamical properties. The main reason is to know the
precise conditions under which a statistical description is
legitimate and to estimate the nature of the approxima-
tions which are involved.
Another important characteristic of dynamical systems

is the stability of their solutions under slight variation of
the Hamiltonian. A quantitative measure of this stability
is given by the so-called fidelity or quantum Loschmidt
echo. The fidelity M(t) = |m(t)|2, measures the over-
lap of two states started from the same initial state
and evolved under slightly different HamiltoniansH0 and
H = H0 + ǫV , which are classically chaotic,

m(t) = 〈Ψ0|exp(iHt/~)exp(−iH0t/~)|Ψ0〉. (1)

Quite surprisingly, in spite of its physical relevance,
the behavior of fidelity has been scarcely considered and
only recently, in connection with quantum computation,
a large number of papers appeared. Some important fea-
tures of fidelity are now understood even though we are
still far from the detailed level of knowledge we have
about related quantities such as correlations functions
and escape probabilities. So far, above the perturbative
regime of small ǫ, with Gaussian type decay [1, 2, 3],
two main types of exponential decay of the fidelity have
been identified: i)- The Fermi-golden-rule (FGR) decay,
with the exponent given by the half-width of the cor-
responding local spectral density of states[3, 4, 5, 6].
This decay has been related to the decay of autocor-
relation function [9]. ii)- The Lyapunov regime, above
the FGR regime, with decay rate given by the Lya-
punov exponent of the underlying classical dynamics
[4, 7, 8, 9, 10, 11, 12, 13, 14, 15].
In this paper we show that for classically chaotic sys-

tems, in particular those with weak chaos, the behav-
ior of fidelity can be much more rich and complex than
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FIG. 1: Fidelity M(t) as a function of σ2t for K0 = 0.4,
ǫ ≈ 7.67 × 10−5 and N = N0, 2N0, 4N0, 8N0 (from bottom
to top) where N0 = 4096. (σ = 0.05, 0.1, 0.2, 0.4). The FGR

decay ≃ e−2.2σ2t is shown by the dashed line. Full circles rep-
resent the semiclassical values Ma(t) at σ = 0.4, computed
with expression (7). The numerically computed semiclassi-
cal values Mf (t) turn out to be negligible so that M(t) is
well approximated by Ma(t), as clearly seen from the fig-
ure at σ = 0.4. Averages were performed over 400 initial
point sources, with θ0 taken randomly in the interval [0, 2π).
(The same decaying behaviors are observed for initial Gaus-
sian wavepackets.)

expected. In particular we study perturbation borders
which separate different types of decay.
We start by displaying numerical results which

strongly deviate from the expected behavior. We
consider here the simple, well known, sawtooth map
model[12]. The classical map writes:

p = p+K0(θ − π), θ = θ + p. (mod 2π) (2)

For K0 > 0, the motion is completely chaotic, with Lya-
punov exponent λ = ln{(2+K0+ [(2+K0)

2− 4]1/2)/2}.
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FIG. 2: The exponential decay rate γ versus perturbation
strength σ, calculated from the best fit of lnM(t). Gaussian
wavepackets are taken as initial states. The solid curve shows
the rate Γ ≃ 2.2σ2 of the FGR-decay. The dashed horizonal
lines correspond to the Lyapunov exponents λ = 0.62, 0.96
and 1.32 for K0 = 0.4, 1 and 2, respectively. N = 131072.

The quantum evolution on one map iteration is described
by

ψ = U0ψ ≡ exp
[

−ip̂2/(2~)
]

exp[ik0(θ̂ − π)2/2]ψ, (3)

where p̂ = −i~∂/∂θ and k0 = K0/~, with the effective
Planck constant ~ = 2π/N and N being the dimension of
the Hilbert space. For the perturbed system, K = K0+ǫ
and k = k0 + σ, where σ = ǫ/~ and ǫ << K0.

In Fig. 1 we show the fidelity decay in the expected
FGR regime 1/

√
N . σ . 1. In spite of the fact that

the classical motion is chaotic, it is clearly seen that the
behavior does not obey the FGR which, according to
[4, 12], should be ∝ exp(−Γt) with Γ ≈ 2.2σ2. The same
conclusion can be drawn from Fig. 2 where we plot the
decay rate γ of the fidelity as a function of σ. Indeed at
K0 = 0.4 the decay rate γ versus σ appears quite different
from the quadratic one [16].

Deviations are present even at K0 = 1 and only at
K0 = 2 one has good FGR decay. Moreover, above the
FGR regime, where one expects Lyapunov decay, there
are strong oscillations above and below the decay rate λ
(for K0 = 1, and 2). Only at larger σ values, one enters
the Lyapunov regime.

In order to explain the above numerical results, we
start from the standard semiclassical approach [7, 14].
For simplicity, we consider a finite configuration space,
with dimension d and volume V =

∫

dr. The momen-
tum space is also finite, with a volume Vp. In the semi-
classical approach, an initial state ψ0(r0) is propagated
by the semiclassical Van Vleck-Gutzwiller propagator,
ψ(r; t) =

∫

dr0Ksc(r, r0; t)ψ0(r0), where Ksc(r, r0; t) =

∑

sKs(r, r0; t), with

Ks(r, r0; t) =
C

1/2
s

(2πi~)d/2
exp

[

i

~
Ss(r, r0; t)−

iπ

2
µs

]

. (4)

The label s in Eq. (4) (more exactly s(r, r0; t)), indi-
cate classical trajectories starting at r0 and ending at r

in a time t; Ss(r, r0; t) is the time integral of the La-

grangian along the trajectory s, Ss(r, r0; t) =
∫ t

0
dt′L,

Cs = |det(∂2Ss/∂r0i∂rj)|, and µs is the Maslov index
counting the conjugate points.
In Ref. [14], it is shown that the semiclassical approx-

imation to m(t) for initial Gaussian wavepackets has a
simple and convenient expression in the initial momen-
tum space. Following similar arguments for initial point
sources, 〈r|Ψ0〉 =

√

(2π~)d/Vpδ(r− r0), ( the theory can
be extended to general initial states), one can write m(t)
as

m(r0, t) ≃
1

Vp

∫

dp0exp

[

i

~
∆S(p0, r0; t)

]

, (5)

where ∆S(p0, r0; t) is the action difference along the
trajectory starting at (r0,p0) for the two systems H0

and H . In the first order classical perturbation theory,
∆S(p0, r0; t) = ǫ

∫ t

0
dt′V [r(t′)], with V evaluated along

the trajectory.
The averaged (over r0) fidelity can be separated into

a mean-value part and a fluctuating part [11], denoted
by Ma(t) and Mf (t) respectively, M(t) ≡ |m(t)|2 =
Ma(t) +Mf (t), where

Ma(t) ≡ |m(t)|2, with m(t) =
1

V

∫

dr0m(r0, t). (6)

From Eqs. (5) and (6), it is seen that the mean-value
part Ma(t) can be expressed in terms of the distribution
P (∆S) of the action difference ∆S,

Ma(t) ≃
∣

∣

∣

∣

∫

d∆Sei∆S/~P (∆S)

∣

∣

∣

∣

2

, where (7)

P (∆S) =
1

∫

dr0dp0

∫

dr0dp0δ [∆S −∆S(p0, r0; t)] . (8)

It is usually assumed that for chaotic systems P (∆S)
is close to a Gaussian with a variance [2ǫ2K(E)t], where
K(E) =

∫∞

0
dt〈V [r(t)]V [(r(0)]〉 is the classical action dif-

fusion constant [3]. As a result, Ma(t) ≃ e−Γt, where
Γ = 2σ2K(E). At small σ, the fluctuation is small com-
pared with the average value, because the phase on the
right hand side of Eq. (5) is proportional to σ; then,
M(t) ≃Ma(t) has the FGR-decay.
Let us now consider a fixed r0, and divide the space

of the initial momenta p0 into connected, disjoint sub-
spaces, denoted by Aα, where each Aα is the largest pos-
sible subspace such that the correspondence between p0

and the final position r is one-to-one, i.e. different p0
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FIG. 3: Comparison between the exactM(t), its semiclassical
mean-value part Ma, calculated by using Eqs. (5) and (6),
and the fluctuation part Mf = M sc −Ma, where M sc is the
semiclassical approximation to the fidelity, computed by the
expression (5). Here N = 131072, K0 = 2, and σ = 0.9
(left panel), σ = 3(right panel). The exact M(t) is in good
agreement with its semiclassical approximation M sc(t). The
average is taken over 500 initial point sources.

inside each single component Aα gives different final po-
sition r. It is always possible to make such a division.
The number of subspaces Aα is denoted by Nα. Note
also that the sizes of Aα decrease exponentially with in-
creasing time t. When p0 runs over a subspace Aα, r
may run over part of the configuration space, denoted by
Vα. Note that, with this division of the p0 subspace, the
trajectories starting at r0 are divided into Nα groups and
“near” trajectories typically belong to the same group.

The amplitude m(r0, t) in Eq. (5) can now be written
as m(r0, t) ≃

∑

αmα(r0, t), where

mα(r0, t) =
1

Vp

∫

Vα

drCsexp

[

i

~
∆Ss(r, r0; t)

]

(9)

with integration over the subspace Vα, in which the
change of variable p0 → r within the subspaces Aα has
been done and ∆Ss(r, r0; t) coincides with ∆S(p0, r0; t)
for the same trajectory s starting at (r0,p0) with p0 ∈
Aα. Mf (t) is written as

Mf (t) ≃
∣

∣

∣

∣

∣

∑

α

mαf

∣

∣

∣

∣

∣

2

with mαf = mα(r0, t)−
m(t)

Nα
. (10)

When σ is large enough, above a critical border σf ,
mα(r0, t) can be regarded as possessing random phase,
and therefore Mf can be approximated by its diagonal
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FIG. 4: Similar to Fig. 3, for K0 = 1 and σ = 6. At this
large σ, Ma(t) is negligible compared with Mf (t).

part

Mf (t) ≃
∑

α

|mαf |2 ≃
∑

α

|mα(r0, t)|2

∝
∫

dr0
∑

α

∣

∣

∣

∣

∫

Vα

drCsexp

(

i

~
∆Ss

)∣

∣

∣

∣

2

,(11)

where the second approximation is obtained by noticing
that |m(t)/Nα| << |mα| at large σ.
When the phase space is homogeneous with constant

local (maximum) Lyapunov exponent λ, as in the saw-
tooth map, the number Ns(r0, r) of trajectories connect-
ing two points r0 and r in the configuration space is ap-
proximately Ns ≃ Nα ≃ eλt[17]. The summation over α
in (11) gives a contribution approximately proportional
to Ns. At t large enough, the main time dependence
of |

∫

Vα

drCse
i

~
∆Ss | is given by Cs ∝ e−λt. Combining

these results, it is seen that at σ > σf , Mf (t) has the
Lyapunov decay, Mf (t) ∝ e−λt.
In order to have the Lyapunov decay for M(t), the

term Ma(t) must be small. To this end one needs to
further increase σ above a critical value σr, so that the
variance of the phase of m(r0, t) with respect to r0 will
become so large that Ma(t) is negligible.
The right panel of Fig. 3 gives an example of Ma(t) ≈

Mf (t). This explains the fluctuation of γ versus σ shown
in Fig. 2 at K0 = 2 and σ < 3. Fig. 4 instead gives an
example with σ large enough (σ > σr), so that Ma(t) is
negligible and M(t) ≃Mf (t).
The deviation from FGR decay observed in Figs. 1 and

2 is due to the deviation of P (∆S) from the Gaussian
behavior. Indeed, when chaos in the underlying classical
dynamics is strong enough (K0 > 1), correlations be-
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FIG. 5: Distribution P [(∆S−〈∆S〉)/ǫ] of the classical action
difference ∆S, at t = 10, calculated by taking randomly 107

initial points in the phase space, where 〈∆S〉 ≡ ǫt〈V (θ)〉 =
−π2ǫt/6, with an average over the phase space.

tween non-overlapping parts of a trajectory decay very
rapidly and the distribution P (∆S/ǫ) reaches, in a rela-
tively short time, the Gaussian distribution. This is the
case of Fig. 5 for K0 = 2 , where K(E) = π4/90 ≃ 1.08
with Γ = 2K(E)σ2 ≃ 2.16σ2, in agreement with the nu-
merical results in Ref. [12] and in Fig. 2. However, when
K0 is not sufficiently large, e.g., K0 = 0.4, a consider-
able deviation of P (∆S/ǫ) from the Gaussian distribu-
tion appears for times comparable to the fidelity decay
times (Fig. 5). According to Eq. (7), this leads to de-
viations from the FGR-decay as observed in Fig. 1. We
would like to draw the reader attention to the fact that,
for K0 < 1 the saw-tooth map, even though completely
chaotic, it possess a structure of cantori which, in the
quantum case, can act as perfect barriers to quantum
motion thus leading to localization of wavefunctions.

Notice that the deviation of P (∆S/ǫ) from the Gaus-
sian distribution depends onK0 but not on ǫ or σ. There-
fore, by increasing σ, the effect of this deviation becomes
more and more important, since the FGR exponential
decay has a decay rate proportional to σ2 while the devi-
ation from the Gaussian remains unchanged. Therefore,
for a given system, there is a critical value σd, below
which the FGR decay is obeyed with good accuracy and
above which FGR breaks down. This case is illustrated in
Fig. 2 for the case K0 = 1, which coincides with the well-
known Arnold cat map, the paradigmatic model of chaos.
Here the distribution P (∆S/ǫ) (at t= 10) is slightly dif-
ferent from the Gaussian distribution and the decay rate
γ of fidelity deviates from the FGR decay for σ & 0.3.
In cases of weak classical chaos, the value of σd can be
so small that FGR is never observed (e.g. the case with
K0 = 0.4). The left panel in Fig. 3 shows instead a case
at K0 = 2 and σ = 0.9, in which Ma(t) obeys the FGR

decay and Mf (t) is negligible.

To summarize: above the perturbative border, the fi-
delity has a FGR decay for σ < σd, while for σ > σr,
it has the Lyapunov decay. In the intermediate region,
for σd < σ < σf , the fidelity deviates from FGR and
can decay even faster than Lyapunov. For σf < σ < σr,
Ma(t) ∼ Mf (t) and the decay rate of M(t) fluctuates
around the Lyapunov exponent. It may be useful to recall
here the physical meaning of different borders. Above σd,
the distribution P (∆S) deviates from the Gaussian and
this induces deviations from the expected FGR decay.
Below σr, Ma(t) is non negligible as compared to Mf (t)
and this induces deviations from the expected Lyapunov
decay.

It may be interesting to remark that the relation be-
tween the decomposition in two part of M(t) here and
that in Ref. [7] is the following. At σ small enough
M(t) ≃ Ma(t) ≃ Mnd(t), with Mf (t) and Md(t) neg-
ligible; while at σ large enough M(t) ≃ Mf (t) ≃ Md(t),
with Ma(t) and Mnd(t) negligible. In the intermediate
regime of σ, in particular, in the crossover from the FGR
decay to the Lyapunov decay, there may be considerable
difference between the two divisions.

In this paper, by using the sawtooth map, we have
demonstrated that the fidelity decay in a generic chaotic
system can have a very complex behavior. In partic-
ular, deviations from the Fermi golden rule (for weak
chaos) and Lyapunov decay have been discussed as well
as the existence of perturbation borders separating differ-
ent regimes. It is our opinion that fidelity is an important
quantity which characterizes the stability of classical and
quantum systems. It therefore deserves deeper analyti-
cal and numerical studies in order to fully understand its
behavior in different dynamical regimes.
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