High Energy Physics - Phenomenology
[Submitted on 11 Jun 2007 (v1), last revised 21 Sep 2007 (this version, v2)]
Title:Hybrid inflation followed by modular inflation
View PDFAbstract: Inflationary models with a superheavy scale F-term hybrid inflation followed by an intermediate scale modular inflation are considered. The restrictions on the power spectrum P_R of curvature perturbation and the spectral index n_s from the recent data within the power-law cosmological model with cold dark matter and a cosmological constant can be met provided that the number of e-foldings N_HI* suffered by the pivot scale k_*=0.002/Mpc during hybrid inflation is suitably restricted. The additional e-foldings needed for solving the horizon and flatness problems are generated by modular inflation with a string axion as inflaton. For central values of P_R and n_s, the grand unification scale comes out, in the case of standard hybrid inflation, close to its supersymmetric value M_GUT=2.86 x 10^16 GeV, the relevant coupling constant is relatively large (0.005-0.14), and N_HI* is between 10 and 21.7. In the shifted [smooth] hybrid inflation case, the grand unification scale can be identified with M_GUT for N_HI*=21 [N_HI*=18].
Submission history
From: George Lazarides [view email][v1] Mon, 11 Jun 2007 10:39:18 UTC (347 KB)
[v2] Fri, 21 Sep 2007 16:24:11 UTC (347 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.