Mathematics > Rings and Algebras
[Submitted on 12 Sep 2007]
Title:Relative Singularity Categories and Gorenstein-Projective Modules
View PDFAbstract: We introduce the notion of relative singularity category with respect to any self-orthogonal subcategory $\omega$ of an abelian category. We introduce the Frobenius category of $\omega$-Cohen-Macaulay objects, and under some reasonable conditions, we show that the stable category of $\omega$-Cohen-Macaulay objects is triangle-equivalent to the relative singularity category. As applications, we relate the stable category of (unnecessarily finitely-generated) Gorenstein-projective modules with singularity categories of rings. We prove that for a Gorenstein ring, the stable category of Gorenstein-projective modules is compactly generated and its compact objects coincide with finitely-generated Gorenstein-projective modules up to direct summands.
Current browse context:
math.RA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.