Mathematics > Dynamical Systems
[Submitted on 15 Oct 2007 (v1), last revised 2 Mar 2021 (this version, v2)]
Title:On two problems concerning topological centers
View PDFAbstract:Let G be an infinite discrete group and bG its Cech-Stone compactification. Using the well known fact that a free ultrafilter on an infinite set is nonmeasurable, we show that for each element p of the remainder bG G, left multiplication L_p:bG \to bG is not Borel measurable. Next assume that G is abelian. Let D \subset \ell^\infty(G)$ denote the subalgebra of distal functions on G and let G^D denote the corresponding universal distal (right topological group) compactification of G. Our second result is that the topological center of G^D (i.e. the set of p in G^D for which L_p:G^D \to G^D is a continuous map) is the same as the algebraic center and that for G=Z (the group of integers) this center coincides with the canonical image of G in G^D.
Submission history
From: Eli Glasner [view email][v1] Mon, 15 Oct 2007 14:21:46 UTC (11 KB)
[v2] Tue, 2 Mar 2021 07:51:25 UTC (12 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.