Mathematics > Algebraic Geometry
[Submitted on 15 Oct 2007]
Title:Hodge-theoretic aspects of the Decomposition Theorem
View PDFAbstract: Given a projective morphism of compact, complex, algebraic varieties and a relatively ample line bundle on the domain we prove that a suitable choice, dictated by the line bundle, of the decomposition isomorphism of the Decomposition Theorem of Beilinson, Bernstein, Deligne and Gabber, yields isomorphisms of pure Hodge structures. The proof is based on a new cohomological characterization of the decomposition isomorphism associated with the line bundle. We prove some corollaries concerning the intersection form in intersection cohomology, the natural map from cohomology to intersection cohomology, projectors and Hodge cycles, and induced morphisms in intersection cohomology.
Submission history
From: Mark Andrea de Cataldo [view email][v1] Mon, 15 Oct 2007 14:30:41 UTC (19 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.