Mathematics > Algebraic Geometry
[Submitted on 15 Oct 2007]
Title:Log Structures on Generalized Semi-Stable Varieties
View PDFAbstract: This is my PhD Thesis, part of it has published in Acta Mathematica Sinica. In this paper, a class of morphisms which have a kind of singularity weaker than normal crossing is considered. We construct the obstruction such that the so-called semi-stable log structures exists if and only if the obstruction vanishes. In the case of no power, if the obstruction vanishes, then the semi-stable log structure is unique up to a unique isomorphism. So we obtain a kind of canonical structures on this family of morphisms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.