Mathematics > Differential Geometry
[Submitted on 22 Oct 2007 (v1), last revised 2 Mar 2008 (this version, v2)]
Title:Bounding sectional curvature along a Kähler-Ricci flow
View PDFAbstract: If a normalized Kähler-Ricci flow $g(t),t\in[0,\infty),$ on a compact Kähler $n$-manifold, $n\geq 3$, of positive first Chern class satisfies $g(t)\in 2\pi c_{1}(M)$ and has $L^{n}$ curvature operator uniformly bounded, then the curvature operator will also uniformly bounded along the flow. Consequently the flow will converge along a subsequence to a Kähler-Ricci soliton.
Submission history
From: Yuguang Zhang [view email][v1] Mon, 22 Oct 2007 03:18:35 UTC (7 KB)
[v2] Sun, 2 Mar 2008 02:26:00 UTC (10 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.