Mathematics > Differential Geometry
[Submitted on 21 Oct 2007 (v1), last revised 21 Jan 2008 (this version, v2)]
Title:First Eigenvalues of Geometric Operators under the Ricci Flow
View PDFAbstract: In this paper, we prove that the first eigenvalues of $-\Delta + cR$ ($c\geq \frac14$) is nondecreasing under the Ricci flow. We also prove the monotonicity under the normalized flow for the case $c=1/4$, and $r\le 0$.
Submission history
From: Xiaodong Cao [view email][v1] Sun, 21 Oct 2007 19:23:14 UTC (6 KB)
[v2] Mon, 21 Jan 2008 03:23:14 UTC (5 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.