Mathematics > Differential Geometry
[Submitted on 31 Oct 2007]
Title:Frobenius Manifolds as a Special Class of Submanifolds in Pseudo-Euclidean Spaces
View PDFAbstract: We introduce a class of potential submanifolds in pseudo-Euclidean spaces (each N-dimensional potential submanifold is a special flat torsionless submanifold in a 2N-dimensional pseudo-Euclidean space) and prove that each N-dimensional Frobenius manifold can be locally represented as an N-dimensional potential submanifold. We show that all potential submanifolds bear natural special structures of Frobenius algebras on their tangent spaces. These special Frobenius structures are generated by the corresponding flat first fundamental form and the set of the second fundamental forms of the submanifolds (in fact, the structural constants are given by the set of the Weingarten operators of the submanifolds). We prove that the associativity equations of two-dimensional topological quantum field theories are very natural reductions of the fundamental nonlinear equations of the theory of submanifolds in pseudo-Euclidean spaces and define locally the class of potential submanifolds. The problem of explicit realization of an arbitrary concrete Frobenius manifold as a potential submanifold in a pseudo-Euclidean space is reduced to solving a linear system of second-order partial differential equations. For concrete Frobenius manifolds, this realization problem can be solved explicitly in elementary and special functions.
Current browse context:
math.DG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.