General Relativity and Quantum Cosmology
[Submitted on 8 Nov 2007]
Title:Geodesic motion in the neighbourhood of submanifolds embedded in warped product spaces
View PDFAbstract: We study the classical geodesic motions of nonzero rest mass test particles and photons in (3+1+n)- dimensional warped product spaces. An important feature of these spaces is that they allow a natural decoupling between the motions in the (3+1)-dimensional spacetime and those in the extra n dimensions. Using this decoupling and employing phase space analysis we investigate the conditions for confinement of particles and photons to the (3+1)- spacetime submanifold. In addition to providing information regarding the motion of photons, we also show that these motions are not constrained by the value of the extrinsic curvature. We obtain the general conditions for the confinement of geodesics in the case of pseudo-Riemannian manifolds as well as establishing the conditions for the stability of such confinement. These results also generalise a recent result of the authors concerning the embeddings of hypersurfaces with codimension one.
Submission history
From: Carlos Augusto Romero Filho [view email][v1] Thu, 8 Nov 2007 14:08:01 UTC (18 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.