General Relativity and Quantum Cosmology
[Submitted on 9 Nov 2007]
Title:Elie Cartan's torsion in geometry and in field theory, an essay
View PDFAbstract: We review the application of torsion in field theory. First we show how the notion of torsion emerges in differential geometry. In the context of a Cartan circuit, torsion is related to translations similar as curvature to rotations. Cartan's investigations started by analyzing Einsteins general relativity theory and by taking recourse to the theory of Cosserat continua. In these continua, the points of which carry independent translational and rotational degrees of freedom, there occur, besides ordinary (force) stresses, additionally spin moment stresses. In a 3-dimensional continuized crystal with dislocation lines, a linear connection can be introduced that takes the crystal lattice structure as a basis for parallelism. Such a continuum has similar properties as a Cosserat continuum, and the dislocation density is equal to the torsion of this connection. Subsequently, these ideas are applied to 4-dimensional spacetime. A translational gauge theory of gravity is displayed (in a Weitzenboeck or teleparallel spacetime) as well as the viable Einstein-Cartan theory (in a Riemann-Cartan spacetime). In both theories, the notion of torsion is contained in an essential way. Cartan's spiral staircase is described as a 3-dimensional Euclidean model for a space with torsion, and eventually some controversial points are discussed regarding the meaning of torsion.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.