General Relativity and Quantum Cosmology
[Submitted on 19 Nov 2007 (v1), last revised 28 Feb 2008 (this version, v4)]
Title:Gravitational solitons and $C^0$ vacuum metrics in five-dimensional Lovelock gravity
View PDFAbstract: Junction conditions for vacuum solutions in five-dimensional Einstein-Gauss-Bonnet gravity are studied. We focus on those cases where two spherically symmetric regions of space-time are joined in such a way that the induced stress tensor on the junction surface vanishes. So a spherical vacuum shell, containing no matter, arises as a boundary between two regions of the space-time. A general analysis is given of solutions that can be constructed by this method of geometric surgery. Such solutions are a generalized kind of spherically symmetric empty space solutions, described by metric functions of the class $C^0$. New global structures arise with surprising features. In particular, we show that vacuum spherically symmetric wormholes do exist in this theory. These can be regarded as gravitational solitons, which connect two asymptotically (Anti) de-Sitter spaces with different masses and/or different effective cosmological constants. We prove the existence of both static and dynamical solutions and discuss their (in)stability under perturbations that preserve the symmetry. This leads us to discuss a new type of instability that arises in five-dimensional Lovelock theory of gravity for certain values of the coupling of the Gauss-Bonnet term. The issues of existence and uniqueness of solutions and determinism in the dynamical evolution are also discussed.
Submission history
From: Steven Willison [view email][v1] Mon, 19 Nov 2007 18:39:07 UTC (377 KB)
[v2] Mon, 26 Nov 2007 23:46:49 UTC (378 KB)
[v3] Tue, 15 Jan 2008 23:46:34 UTC (378 KB)
[v4] Thu, 28 Feb 2008 02:38:56 UTC (377 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.