Quantitative Biology > Biomolecules
[Submitted on 23 Jun 2008]
Title:Emergence of mutationally robust proteins in a microscopic model of evolution
View PDFAbstract: The ability to absorb mutations while retaining structure and function, or mutational robustness, is a remarkable property of natural proteins. In this Letter, we use a computational model of organismic evolution [Zeldovich et al, PLOS Comp Biol 3(7):e139 (2007)], which explicitly couples protein physics and population dynamics, to study mutational robustness of evolved model proteins. We find that dominant protein structures which evolved in the simulations are highly designable ones, in accord with some of the earlier observations. Next, we compare evolved sequences with the ones designed to fold into the same dominant structures and having the same thermodynamic stability, and find that evolved sequences are more robust against point mutations, being less likely to be destabilized upon them. These results point to sequence evolution as an important method of protein engineering if mutational robustness of the artificially developed proteins is desired. On the biological side, mutational robustness of proteins appears to be a natural consequence of the mutation-selection evolutionary process.
Submission history
From: Eugene Shakhnovich [view email][v1] Mon, 23 Jun 2008 20:59:00 UTC (270 KB)
Current browse context:
q-bio.BM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.