Mathematical Physics
[Submitted on 31 Mar 2011 (v1), last revised 23 Dec 2011 (this version, v3)]
Title:Moments of the transmission eigenvalues, proper delay times and random matrix theory I
View PDFAbstract:We develop a method to compute the moments of the eigenvalue densities of matrices in the Gaussian, Laguerre and Jacobi ensembles for all the symmetry classes beta = 1,2, 4 and finite matrix dimension n. The moments of the Jacobi ensembles have a physical interpretation as the moments of the transmission eigenvalues of an electron through a quantum dot with chaotic dynamics. For the Laguerre ensemble we also evaluate the finite n negative moments. Physically, they correspond to the moments of the proper delay times, which are the eigenvalues of the Wigner-Smith matrix. Our formulae are well suited to an asymptotic analysis as n -> infinity.
Submission history
From: Francesco Mezzadri [view email][v1] Thu, 31 Mar 2011 14:52:31 UTC (31 KB)
[v2] Wed, 5 Oct 2011 09:35:33 UTC (31 KB)
[v3] Fri, 23 Dec 2011 20:59:25 UTC (31 KB)
Current browse context:
math-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.