Astrophysics > Solar and Stellar Astrophysics
[Submitted on 23 Jul 2013]
Title:On the Intrinsic Continuum Linear Polarization of Classical Be Stars during Disk Growth and Dissipation
View PDFAbstract:We investigate the intrinsic continuum linear polarization from axisymmetric density distributions of gas surrounding classical Be stars during the formation and dissipation of their circumstellar disks. We implement a Monte Carlo calculation of the Stokes parameters with the use of the non-LTE radiative transfer code of Sigut & Jones (2007) to reproduce the continuous polarimetric spectra of classical Be stars. The scattering of light in the nonspherical circumstellar envelopes of classical Be stars produces a distinct polarization signature that can be used to study the physical nature of the scattering environment. In this paper, we highlight the utility of polarimetric measurements as important diagnostics in the modeling of these systems. We illustrate the effects of using self-consistent calculation of the thermal structure of the circumstellar gas on the characteristic wavelength-dependence of the polarization spectrum. In showing that the principal features of the polarization spectrum originate from different parts of the disk, we emphasize the capability of polarimetric observations to trace the evolution of the disk on critical scales. We produce models that approximate the disk formation and dissipation periods and illustrate how the polarimetric properties of these systems can have a pivotal role in determining the mechanism for mass decretion from the central star.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.