Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 26 Jul 2013 (v1), last revised 20 Oct 2013 (this version, v2)]
Title:A comparison of structure formation in minimally and non-minimally coupled quintessence models
View PDFAbstract:We study structure formation in non-minimally coupled dark energy models, where there is a coupling in the Lagrangian between a quintessence scalar field and gravity via the Ricci scalar. We consider models with a range of different non-minimal coupling strengths and compare these to minimally coupled quintessence models with time-dependent dark energy densities. The equations of state of the latter are tuned to either reproduce the equation of state of the non-minimally coupled models or their background history. Thereby they provide a reference to study the unique imprints of coupling on structure formation. We show that the coupling between gravity and the scalar field, which effectively results in a time-varying gravitational constant G, is not negligible and its effect can be distinguished from a minimally coupled model. We extend previous work on this subject by showing that major differences appear in the determination of the mass function at high masses, where we observe differences of the order of 40% at z=0. Our new results concern effects on the non-linear matter power spectrum and on the lensing signal (differences of ~10% for both quantities), where we find that non-minimally coupled models could be distinguished from minimally coupled ones.
Submission history
From: Francesco Pace [view email][v1] Fri, 26 Jul 2013 13:23:11 UTC (147 KB)
[v2] Sun, 20 Oct 2013 10:39:14 UTC (147 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.