High Energy Physics - Lattice
[Submitted on 13 Nov 2013]
Title:Quantum ideal hydrodynamics on the lattice
View PDFAbstract:After discussing the problem of defining the hydrodynamic limit from microscopic scales, we give an introduction to ideal hydrodynamics in the Lagrange picture, and show that it can be viewed as a field theory, which can be quantized using the usual Feynman sum-over-paths prescription. We then argue that this picture can be connected to the usually neglected thermal microscopic scale in the hydrodynamic expansion. After showing that this expansion is generally non-perturbative, we show how the lattice can be used to understand the impact quantum and thermal fluctuations can have on the fluid behavior.
Current browse context:
hep-lat
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.