High Energy Physics - Phenomenology
[Submitted on 16 Mar 2015]
Title:Experimental constraints on the coupling of the Higgs boson to electrons
View PDFAbstract:In the standard model (SM), the coupling of the Higgs boson to electrons is real and very small, proportional to the electron mass. New physics could significantly modify both real and imaginary parts of this coupling. We discuss experiments which are sensitive to the Higgs-electron coupling and derive the current bounds on new physics contributing to this coupling. The strongest constraint follows from the ACME bound on the electron electric dipole moment (EDM). We calculate the full analytic two-loop result for the electron EDM and show that it bounds the imaginary part of the Higgs-electron coupling to be less than 1.7 x 10^-2 times the SM electron Yukawa coupling. Deviations of the real part are much less constrained. We discuss bounds from Higgs decays, resonant Higgs production at electron colliders, Higgs mediated B -> e^+ e^- decays, and the anomalous magnetic moment of the electron. Currently, the strongest constraint comes from h -> e^+ e^- at the LHC, bounding the coupling to be less than ~600 times the SM Yukawa coupling. Important improvements can be expected from future EDM measurements as well as from resonant Higgs production at a next-generation high-luminosity e^+ e^- collider.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.