High Energy Physics - Lattice
[Submitted on 4 Feb 2016]
Title:Modeling the Landau-Gauge Ghost Propagator in 2, 3 and 4 Space-Time Dimensions
View PDFAbstract:We present an analytic description of numerical results for the ghost propagator G(p^2) in minimal Landau gauge on the lattice. The data were produced in the SU(2) case using the largest lattice volumes to date, for d = 2, 3 and 4 space-time dimensions. Our proposed form for G(p^2) is derived from the one-loop relation between ghost and gluon propagators, considering a tree-level ghost-gluon vertex and our previously obtained gluon-propagator results \cite{Cucchieri:2011ig}. Although this one-loop expression is not a good description of the data, it leads to a one-parameter fit of our ghost-propagator data with a generally good value of \chi^2/dof, comparable to other fitting forms used in the literature. At the same time, we present a simple parametrization of the difference between the lattice data and the one-loop predictions.
Current browse context:
hep-lat
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.