High Energy Physics - Phenomenology
[Submitted on 4 Mar 2016]
Title:Improved analyses for $μ^-e^-\rightarrow e^-e^-$ in muonic atoms by contact interactions
View PDFAbstract:The charged lepton flavor violating (CLFV) processes of $\mu^-e^-\rightarrow e^-e^-$ decay by four Fermi contact interactions in a muonic atom for various atoms are investigated. The wave functions of bound and scattering state leptons are properly treated by solving Dirac equations with Coulomb interaction of the finite nuclear charge distributions. This new effect contributes significantly in particular for heavier atoms, where the obtained decay rate is about one order of magnitude larger than the previous estimation for $^{208}$Pb. We find that, as the atomic number $Z$ increases, the $\mu^-e^-\rightarrow e^-e^-$ decay rates increase more rapidly than the result of the previous work of $Z^3$, suggesting this decay as one of the promising processes to search for CLFV interaction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.