Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 2 Jun 2016 (v1), last revised 1 Sep 2016 (this version, v2)]
Title:Reconciling Planck with the local value of $H_0$ in extended parameter space
View PDFAbstract:The recent determination of the local value of the Hubble constant by Riess et al, 2016 (hereafter R16) is now 3.3 sigma higher than the value derived from the most recent CMB anisotropy data provided by the Planck satellite in a LCDM model. Here we perform a combined analysis of the Planck and R16 results in an extended parameter space, varying simultaneously 12 cosmological parameters instead of the usual 6. We find that a phantom-like dark energy component, with effective equation of state $w=-1.29_{-0.12}^{+0.15}$ at 68 % c.l. can solve the current tension between the Planck dataset and the R16 prior in an extended $\Lambda$CDM scenario. On the other hand, the neutrino effective number is fully compatible with standard expectations. This result is confirmed when including cosmic shear data from the CFHTLenS survey and CMB lensing constraints from Planck. However, when BAO measurements are included we find that some of the tension with R16 remains, as also is the case when we include the supernova type Ia luminosity distances from the JLA catalog.
Submission history
From: Eleonora Di Valentino [view email][v1] Thu, 2 Jun 2016 11:44:54 UTC (28 KB)
[v2] Thu, 1 Sep 2016 13:28:22 UTC (30 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.