Mathematics > Group Theory
[Submitted on 20 Mar 2018 (v1), last revised 7 Dec 2018 (this version, v2)]
Title:Lagrange's Theorem For Hom-Groups
View PDFAbstract:Hom-groups are nonassociative generalizations of groups where the unitality and associativity are twisted by a map. We show that a Hom-group (G, {\alpha}) is a pointed idempotent quasigroup (pique). We use Cayley table of quasigroups to introduce some examples of Hom-groups. Introducing the notions of Hom-subgroups and cosets we prove Lagrange's theorem for finite Hom-groups. This states that the order of any Hom-subgroup H of a finite Hom-group G divides the order of G. We linearize Hom-groups to obtain a class of nonassociative Hopf algebras called Hom-Hopf algebras. As an application of our results, we show that the dimension of a Hom-sub-Hopf algebra of the finite dimensional Hom-group Hopf algebra KG divides the order of G. The new tools introduced in this paper could potentially have applications in theories of quasigroups, nonassociative Hopf algebras, Hom-type objects, combinatorics, and cryptography.
Submission history
From: Mohammad Hassanzadeh [view email][v1] Tue, 20 Mar 2018 22:18:46 UTC (12 KB)
[v2] Fri, 7 Dec 2018 04:40:23 UTC (13 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.