Mathematics > Analysis of PDEs
[Submitted on 4 Apr 2018 (v1), last revised 13 Jun 2020 (this version, v2)]
Title:Boundary Hölder Regularity for Elliptic Equations
View PDFAbstract:This paper investigates the relation between the boundary geometric properties and the boundary regularity of the solutions of elliptic equations. We prove by a new unified method the pointwise boundary Hölder regularity under proper geometric conditions. "Unified" means that our method is applicable for the Laplace equation, linear elliptic equations in divergence and non-divergence form, fully nonlinear elliptic equations, the $p-$Laplace equations and the fractional Laplace equations etc. In addition, these geometric conditions are quite general. In particular, for local equations, the measure of the complement of the domain near the boundary point concerned could be zero. The key observation in the method is that the strong maximum principle implies a decay for the solution, then a scaling argument leads to the Hölder regularity. Moreover, we also give a geometric condition, which guarantees the solvability of the Dirichlet problem for the Laplace equation. The geometric meaning of this condition is more apparent than that of the Wiener criterion.
Submission history
From: Kai Zhang [view email][v1] Wed, 4 Apr 2018 08:47:02 UTC (13 KB)
[v2] Sat, 13 Jun 2020 01:09:05 UTC (18 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.